Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Saliency detection from one time sampling for eye fixation prediction

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Saliency modeling has become one of the most popular studies in computer vision. Many previous works adopted distinctness to compute saliency score of an image element, which usually need point-to-point distances calculation and it is quadratic complexity. In this paper, a visual saliency model based on one time sampling outlier detection is proposed, and the time complexity is linear to image size, further analyses and experiments demonstrate that our model is robust and efficient. This model is parameter insensitive, without learning, and easy to implement. Extensive experiments on four benchmark datasets show that our model is competitive compare with state-of-the-art models under shuffled AUC metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The term ”data set” in this paper is a data cluster which consists of inliers and outliers, differ from eye-tracking dataset for saliency detection.

References

  1. Borji A, Itti L (2012) Exploiting local and global patch rarities for saliency detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 478–485

  2. Bruce NDB, Tsotsos JK (2009) Saliency, attention, and visual search: An information theoretic approach. J Vis 9(3):5

    Article  Google Scholar 

  3. Carreira J, Sminchisescu C (2010) Constrained parametric min-cuts for automatic object segmentation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 3241–3248

  4. Chen C, Tang H, Lyu Z, Liang H, Shang J, Serem M (2014) Saliency modeling via outlier detection. J Electron Imaging 23(5):053023–053023

    Article  Google Scholar 

  5. Duan L, Wu C, Miao J, Qing L, Fu Y (2011) Visual saliency detection by spatially weighted dissimilarity. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 473–480

  6. Frintrop S, Werner T, García GM (2015) Traditional saliency reloaded: A good old model in new shape. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 82–90

  7. Garcia-Diaz A, Fdez-Vidal XR, Pardo XM, Dosil R (2012) Saliency from hierarchical adaptation through decorrelation and variance norMalization. Image Vis Comput 30(1):51–64

    Article  Google Scholar 

  8. Guo C, Ma Q, Zhang L (2008) Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: CVPR 2008. IEEE conference on Computer vision and pattern recognition. IEEE, pp 1–8

  9. Hawkins DM (1980) Identification of outliers, vol 11. Springer

  10. Hadizadeh H, Bajic IV (2014) Saliency-aware video compression. IEEE Trans Image Process 23(1):19–33

    Article  MathSciNet  MATH  Google Scholar 

  11. Hou X, Harel J, Koch C (2012) Image signature: Highlighting sparse salient regions. IEEE Trans Pattern Anal Mach Intell 34(1):194–201

    Article  Google Scholar 

  12. Harel J, Koch C, Perona P (2006) Graph-based visual saliency. In: Advances in Neural Information Processing Systems, pp 545–552

  13. Han J, Ngan KN, Li M, Zhang H-J (2006) Unsupervised extraction of visual attention objects in color images. IEEE Trans Circ Syst Video Technol 16(1):141–145

    Article  Google Scholar 

  14. Huang L, Pashler H (2007) A boolean map theory of visual attention. Psychol Rev 114(3):599

    Article  Google Scholar 

  15. Huang X, Shen C, Boix X, Zhao Qi (2015) Salicon Reducing the semantic gap in saliency prediction by adapting deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 262–270

  16. Hou X, Zhang L (2007) Saliency detection: A spectral residual approach. In: CVPR 2007. IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 1–8

  17. Hou X, Zhang L (2009) Dynamic visual attention: Searching for coding length increments. In: Advances in Neural Information Processing Systems, pp 681–688

  18. Itti L, Baldi P (2009) Bayesian surprise attracts human attention. Vis Res 49(10):1295–1306

    Article  Google Scholar 

  19. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  20. Judd T, Ehinger K, Durand F, Torralba A (2009) Learning to predict where humans look. In: 2009 IEEE 12th international conference on Computer Vision. IEEE, pp 2106–2113

  21. Klein DA, Frintrop S (2011) Center-surround divergence of feature statistics for salient object detection. In: 2011 IEEE International Conference on Computer Vision (ICCV). IEEE, pp 2214–2219

  22. Kriegel H-P, Kröger P, Zimek A (2009) Outlier detection techniques. In: Tutorial at the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining

  23. Kootstra G, Nederveen A, De Boer B (2008) Paying attention to symmetry. In: Proceedings of the british machine vision conference (bmvc2008). The British Machine Vision Association and Society for Pattern Recognition, pp 1115–1125

  24. Knorr EM, Ng RT, Tucakov V (2000) Distance-based outliers: algorithms and applications. VLDB J 8(3-4):237–253

    Article  Google Scholar 

  25. Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiol 4(4):219–227

    Google Scholar 

  26. Liu R, Cao J, Lin Zx, Shan S (2014) Adaptive partial differential equation learning for visual saliency detection. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, p 3866–3873

  27. Liu N, Han J, Zhang D, Wen S, Liu T (2015) Predicting eye fixations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 362–370

  28. Liang M, Hu X (2015) Predicting eye fixations with higher-level visual features. IEEE Trans Image Process 24(3):1178–1189

    Article  MathSciNet  Google Scholar 

  29. Li Y, Hou X, Koch C, Rehg JM, Yuille AL (2014) The secrets of salient object segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 280–287

  30. Li J, Levine MD, An X, Xu X, He H (2013) Visual saliency based on scale-space analysis in the frequency domain, vol 35, pp 996–1010

  31. Lu S, Tan C, Lim J-H (2014) Robust and efficient saliency modeling from image co-occurrence histograms. IEEE Trans Pattern Anal Mach Intell 36(1):195–201

    Article  Google Scholar 

  32. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H-Y (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33 (2):353–367

    Article  Google Scholar 

  33. Margolin R, Tal A, Zelnik-Manor L (2013) What makes a patch distinct?. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 1139–1146

  34. Niu Jie, Xiongzhu B u, Qian Kun (2016) Exploiting contrast cues for salient region detection. Multimedia Tools and Applications:1–15

  35. Riche N, Mancas M, Duvinage M, Mibulumukini M, Gosselin B, Dutoit T (2013) Rare2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis. Signal Process: Image Commun 28(6):642–658

    Google Scholar 

  36. Rutishauser U, Walther D, Koch C, Perona P (2004) Is bottom-up attention useful for object recognition?. In: CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on In Computer Vision and Pattern Recognition, vol 2. IEEE, pp II–37

  37. Sugiyama M, Borgwardt K (2013) Rapid distance-based outlier detection via sampling. In: Advances in Neural Information Processing Systems, pp 467–475

  38. Sultani W, Saleemi I (2014) Human action recognition across datasets by foreground-weighted histogram decomposition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 764–771

  39. Schauerte B, Stiefelhagen R (2012) Quaternion-based spectral saliency detection for eye fixation prediction. In: Computer Vision–ECCV 2012. Springer, pp 116–129

  40. Sun X, Yao H, Ji R (2012) What are we looking for: Towards statistical modeling of saccadic eye movements and visual saliency. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 1552–1559

  41. Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136

    Article  Google Scholar 

  42. Torralba A, Oliva A, Castelhano MS, Henderson JM (2006) Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev 113(4):766

    Article  Google Scholar 

  43. Vig E, Dorr M, Cox D (2014) Large-scale optimization of hierarchical features for saliency prediction in natural images. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 2798–2805

  44. Wei Y, Wen F, Zhu W, Sun J (2012) Geodesic saliency using background priors. In: Computer Vision–ECCV 2012. Springer, pp 29–42

  45. Yang B, Xu D (2014) Color boosted visual saliency detection and its application to image classification. Multimed Tools Appl 69(3):877–896

    Article  MathSciNet  Google Scholar 

  46. Yang C, Zhang L, Lu H, Ruan X, Yang M-H (2013) Saliency detection via graph-based manifold ranking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 3166–3173

  47. Zhu Z, Chen Q, Zhao Y (2014) Ensemble dictionary learning for saliency detection. Image Vis Comput 32(3):180–188

    Article  Google Scholar 

  48. Zhang G, Yuan Z, Zheng N, Sheng X, Liu T (2010) Visual saliency based object tracking. In: Computer Vision–ACCV 2009. Springer, pp 193–203

  49. Zhang L, Tong MH, Marks TK, Shan H, Cottrell GW (2008) Sun: A bayesian framework for saliency using natural statistics. J Vis 8(7):32

    Article  Google Scholar 

  50. Zhang J, Sclaroff S (2013) Saliency detection: A boolean map approach. In: 2013 IEEE International Conference on Computer Vision (ICCV). IEEE, pp 153–160

Download references

Acknowledgments

He Tang would like to thank Yanan Bie who proof read this article at various stages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Chen, C. & Pei, X. Saliency detection from one time sampling for eye fixation prediction. Multimed Tools Appl 77, 165–184 (2018). https://doi.org/10.1007/s11042-016-4248-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4248-7

Keywords

Navigation