Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An effective web page recommender system with fuzzy c-mean clustering

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

With the exponential development of the number of users browsing the internet, an important factor that now the developer community is focussing on is the user experience. Recommender systems are the platforms that make personalized recommendations for a particular user by predicting the ratings for various items. Recommender systems majorly ignore the sequential information and rather focus on content information, but sequential information also provides much information about the behavior of the user. In this research work, we have presented a novel web-based recommender system which is based on sequential information of user’s navigation on web pages. We received top-N clusters when Fuzzy C-mean (FCM) clustering is employed. We determined the similar users for the target user and also evaluated the weight for each web page. We have tried to solve that problem of recommender systems as we offered a system to forecast a user’s next Web page visit. In our work, we proposed a system which generates recommendations to the users, by considering the sequential information that exists in their usage patterns of Web pages. We employed fuzzy clustering to give recommender system a sequential approach. We calculated weights for each page category considered in our system and predict top page recommendation for the target user. The real-world dataset of MNSBC is used in the experiments. The dataset consists of 5000 user entries with 6, entries per user. When we performed a comparison between the existing model with our proposed model, then it clearly showed that the accuracy of the proposed model is almost three times better than some existing systems. The accuracy of our proposed model is nearly 33 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baraldi A, Blonda P (1999) A survey of fuzzy clustering algorithms for pattern recognition. I. IEEE Trans Syst Man Cybern B Cybern 29:778–785

    Article  Google Scholar 

  2. Barragáns-Martínez B, Costa-Montenegro E, Juncal-Martínez J (2015) Developing a recommender system in a consumer electronic device. Expert Syst Appl 42:4216–4228

    Article  Google Scholar 

  3. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10:191–203

    Article  Google Scholar 

  4. Bilge A, Gunes I, Polat H (2014) Robustness analysis of privacy-preserving model-based recommendation schemes. Expert Syst Appl 41:3671–3681

    Article  Google Scholar 

  5. Bobadilla J, Ortega F, Hernando A, Gutiérrez A (2013) Recommender systems survey. Knowledge-Based Syst 46:109–132

    Article  Google Scholar 

  6. Boratto L, Carta S (2014) The rating prediction task in a group recommender system that automatically detects groups: architectures, algorithms, and performance evaluation. J Intell Inf Syst:1–25

  7. Bouadjenek M, Hacid H, Bouzeghoub M, Vakali A (2016) PerSaDoR: Personalized social document representation for improving web search. Inf Sci (Ny) 369:614–633. doi:10.1016/j.ins.2016.07.046

  8. Bouras C, Tsogkas V (2014) Improving news articles recommendations via user clustering. Int J Mach Learn Cybern 1–15. doi:10.1007/s13042-014-0316-3

  9. Calzarossa MC, Pavia FI, Tessera D (2014) Multivariate analysis of web content changes. In: 2014 IEEE/ACS 11th Int. Conf. Comput. Syst. Appl. IEEE, pp 699–706

  10. Cannon RL, Dave JV, Bezdek JC (1986) Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans Pattern Anal Mach Intell 8:248–255

    Article  MATH  Google Scholar 

  11. Cao J, Li Q, Ji Y et al (2016) Detection of forwarding-based malicious URLs in online social networks. Int J Parallel Prog 44:163–180

    Article  Google Scholar 

  12. Cobo MJ, Martínez MA, Gutiérrez-Salcedo M, et al. (2015) 25years at knowledge-based systems: a bibliometric analysis. Knowledge-Based Syst

  13. Conforti R, de Leoni M, La Rosa M et al (2015) A recommendation system for predicting risks across multiple business process instances. Decis Support Syst 69:1–19

    Article  Google Scholar 

  14. Dixit VS, Bhatia SK (2015) Refinement and evaluation of web session cluster quality. Int J Syst Assur Eng Manag 6:373–389

    Article  Google Scholar 

  15. Dooms S, Audenaert P, Fostier J et al (2014) In-memory, distributed content-based recommender system. J Intell Inf Syst 42:645–669

    Article  Google Scholar 

  16. Forsati R, Moayedikia A, Shamsfard M (2015) An effective web page recommender using binary data clustering. Inf Retr J 18:167–214

    Article  Google Scholar 

  17. Gao Y, Wang F, Luan H, Chua T-S (2014) Brand data gathering from live social media streams. Icmr:169–176

  18. Gao Y, Zhao S, Yang Y, Chua T (2015) Multimedia social event detection in microblog. In: 21st Int. Conf. MMM 2015, Sydney, Aust. January 5-7, 2015. pp 269–281

  19. García MDMR, García-Nieto J, Aldana-Montes JF (2016) An ontology-based data integration approach for web analytics in e-commerce. Expert Syst Appl 63:20–34

    Article  Google Scholar 

  20. Guo Z (2014) Entity linking with a unified semantic representation. In: Int. World Wide Web Conf. Com- mittee. ACM, pp 1305–1309

  21. Hasija H, Katarya R (2014) Secure code assignment to alphabets using modified ant colony optimization along with compression. Proc 2014 Int Conf Adv Comput Commun informatics, ICACCI 2014:175–181

    Article  Google Scholar 

  22. Hoic-Bozic N, Holenko Dlab M, Mornar V (2015) Recommedner System and Web 2.0 Tools to Enhance Blended Learning Model. IEEE Trans Educ in press:39–44

  23. Hu X, Zeng A, Shang M-S (2016) Recommendation in evolving online networks. Eur Phys J B 89:46

    Article  MathSciNet  Google Scholar 

  24. Jalali M, Mustapha N, Sulaiman MN, Mamat A (2010) WebPUM: a web-based recommendation system to predict user future movements. Expert Syst Appl 37:6201–6212

    Article  Google Scholar 

  25. Javari A, Jalili M (2015) A probabilistic model to resolve diversity–accuracy challenge of recommendation systems. Knowl Inf Syst 44:609–627. doi:10.1007/s10115-014-0779-2

  26. Ji K, Sun R, Shu W, Li X (2015) Next-song recommendation with temporal dynamics. Knowledge-Based Syst 88:134–143

    Article  Google Scholar 

  27. Jiménez P, Corchuelo R (2016) On learning web information extraction rules with TANGO. Inf Syst 62:74–103

    Article  Google Scholar 

  28. Katarya R, Jain I, Hasija H (2014) An interactive interface for instilling trust and providing diverse recommendations. In: IEEE Int. Conf. Comput. Commun. Technol. ICCCT-2014. pp 17–22. doi:10.1109/ICCCT.2014.7001463

  29. Katarya R, Verma OP (2015) Restaurant recommender system based on psychographic and demographic factors in mobile environment. In: IEEE Int. Conf. Green Comput. Internet Things 2015. pp 907–912. doi:10.1109/ICGCIoT.2015.7380592

  30. Katarya R, Verma OP (2016a) A collaborative recommender system enhanced with particle swarm optimization technique. Multimed Tools Appl 75:1–15

    Article  Google Scholar 

  31. Katarya R, Verma OP (2016b) Recent developments in affective recommender systems. Phys A Stat Mech its Appl 461:182–190

    Article  Google Scholar 

  32. Katarya R, Verma OP, Jain I (2013) User behaviour analysis in context-aware recommender system using hybrid filtering approach. Proc - 4th IEEE Int Conf Comput Commun Technol ICCCT 2013:222–227

    Google Scholar 

  33. Koohi H, Kiani K (2016) User based collaborative filtering using fuzzy C-means. Measurement 91:134–139

    Article  Google Scholar 

  34. Krishnaraju V, Mathew SK, Sugumaran V (2015) Web personalization for user acceptance of technology: an empirical investigation of E-government services. Inf Syst Front 18:579–595

    Article  Google Scholar 

  35. Laclau C, Nadif M (2016) Hard and fuzzy diagonal co-clustering for document-term partitioning. Neurocomputing 193:133–147

    Article  Google Scholar 

  36. Li B, Zhu X, Li R, Zhang C (2014) Rating knowledge sharing in cross-domain collaborative filtering. IEEE Trans Cybern 45:1–15

    Google Scholar 

  37. Liu D, Zhang Z, Guo X (2016) Web mining based on one-dimensional Kohonen’s algorithm: analysis of social media websites. Neural Comput Appl 1–5. doi:10.1007/s00521-016-2410-9

  38. Lorentzen DG (2014) Webometrics benefitting from web mining? An investigation of methods and applications of two research fields. Scientometrics 99:409–445

    Article  Google Scholar 

  39. Lotfy HMS, Khamis SMS, Aboghazalah MM (2015) Multi-agents and learning: implications for WebUsage mining. J Adv Res 7:285–295. doi:10.1016/j.jare.2015.06.005

  40. Malarvizhi SP, Sathiyabhama B (2016) Frequent pagesets from web log by enhanced weighted association rule mining. Cluster Comput 19:269–277

    Article  Google Scholar 

  41. Mishra R, Kumar P, Bhasker B (2015) A web recommendation system considering sequential information. Decis Support Syst 75:1–10

    Article  Google Scholar 

  42. Moreno MN, Segrera S, López VF et al (2015) Web mining based framework for solving usual problems in recommender systems. A case study for movies’ Recommendation. Neurocomputing 176:72–80

    Article  Google Scholar 

  43. Nguyen TTS, Lu HY, Lu J (2014) Web-page recommendation based on web usage and domain knowledge. IEEE Trans Knowl Data Eng 26:2574–2587

    Article  Google Scholar 

  44. Pàmies-Estrems D, Castellà-Roca J, Viejo A (2016) Working at the web search engine side to generate privacy-preserving user profiles. Expert Syst Appl 64:523–535

    Article  Google Scholar 

  45. Poornalatha G, Raghavendra PS (2011) Web user session clustering using modified K-means algorithm. In: Adv. Comput. Commun. pp 243–252. doi:10.1007/978-3-642-22714-1_26

  46. Ravi K, Ravi V (2015) A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowledge-Based Syst 89:14–46. doi:10.1016/j.knosys.2015.06.015

  47. Ristoski P, Paulheim H (2016) Semantic web in data mining and knowledge discovery: a comprehensive survey. Web Semant Sci Serv Agents World Wide Web 36:1–22

    Article  Google Scholar 

  48. Santoro M, Nativi S, Mazzetti P (2016) Contributing to the GEO model web implementation: a brokering service for business processes. Environ Model Softw 84:18–34

    Article  Google Scholar 

  49. Schmachtenberg M, Strufe T, Paulheim H (2014) Enhancing a location-based recommendation system by enrichment with structured data from the web. In: Proc. 4th Int. Conf. Web Intell. Min. Semant. - WIMS ’14. pp 1–12. doi:10.1145/2611040.2611080

  50. Shivaprasad G, Reddy NVS, Acharya UD, Aithal PK (2015) Neuro-fuzzy based hybrid model for web usage mining. Procedia Comput Sci 54:327–334

    Article  Google Scholar 

  51. Sobitha Ahila S, Shunmuganathan KL (2016) Role of agent Technology in Web Usage Mining: homomorphic encryption based recommendation for E-commerce applications. Wirel Pers Commun 87:499–512

    Article  Google Scholar 

  52. Thanh T, Nguyen S, Lu HY, Lu J (2014) Web-page recommendation based on web usage and domain knowledge. IEEE Trans Knowl Data Eng 26:2574–2587

    Article  Google Scholar 

  53. Thiyagarajan R, Thangavel K, Rathipriya R (2014) Recommendation of web pages using weighted K- means clustering. Int J Comput Appl 86:44–48

    Google Scholar 

  54. Treerattanapitak K, Jaruskulchai C (2012) Exponential fuzzy C-means for collaborative filtering. J Comput Sci Technol 27:567–576

    Article  MATH  Google Scholar 

  55. Verma OP, Katarya R, Bhargava V, Maheshwari N (2011) Use of semantic web in enabling desktop based knowledge management. ICECT 2011–2011 3rd Int Conf Electron Comput Technol 5:190–193

    Article  Google Scholar 

  56. Wang F, Qi S, Gao G et al (2016) Logo information recognition in large-scale social media data. Multimed Syst 22:63–73

    Article  Google Scholar 

  57. Wu X, Zhu X, Wu G-Q, Ding W (2014) Data mining with big data. IEEE Trans Knowl Data Eng 26:97–107

    Article  Google Scholar 

  58. Xie X, Wang B (2016) Web page recommendation via twofold clustering: considering user behavior and topic relation. Neural Comput Appl 1–9. doi:10.1007/s00521-016-2444-z

  59. Yang Y, Yang Y, Shen HT et al (2013) Discriminative nonnegative spectral clustering with out-of-sample extension. IEEE Trans Knowl Data Eng 25:1760–1771

    Article  Google Scholar 

  60. Yang Y, Ma Z, Yang Y et al (2015) Multitask spectral clustering by exploring intertask correlation. IEEE Trans Cybern 45:1069–1080

    Google Scholar 

  61. Yera R, Castro J, Martínez L (2016) A fuzzy model for managing natural noise in recommender systems. Appl Soft Comput 40:187–198

    Article  Google Scholar 

  62. Yu C, Huang L (2016) CluCF: a clustering CF algorithm to address data sparsity problem. Serv Oriented Comput Appl 1–13. doi:10.1007/s11761-016-0191-8

  63. Yu X, Liu Y, Huang X, An A (2012) Mining online reviews for predicting sales performance: a case study in the movie domain. IEEE Trans Knowl Data Eng 24:720–734

    Article  Google Scholar 

  64. Zhang H-R, Min F (2016) Three-way recommender systems based on random forests. Knowledge-Based Syst 91:275–286

    Article  Google Scholar 

  65. Zhang Z, Fang H, Wang H (2016) A new MI-based visualization aided validation index for mining big longitudinal web trial data. IEEE Access 4:2272–2280. doi:10.1109/ACCESS.2016.2569074

  66. Zhao WX, Li S, He Y et al (2016) Connecting social media to E-commerce: cold-start product recommendation using microblogging information. IEEE Trans Knowl Data Eng 28:1147–1159

    Article  Google Scholar 

  67. Zhu K, Wu R, Ying L, Srikant R (2014) Collaborative filtering with information-rich and information-sparse entities. Mach Learn:177–203

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Katarya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katarya, R., Verma, O.P. An effective web page recommender system with fuzzy c-mean clustering. Multimed Tools Appl 76, 21481–21496 (2017). https://doi.org/10.1007/s11042-016-4078-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4078-7

Keywords

Navigation