Abstract
In this paper, we presented a non-uniform 1D ruler model and applied it in various image classification and image recognition scenarios, and some are for military technology usage. Our model is very simple, elegant and original, which is solved by convex quadratic programming. It has wide applications in pattern recognition and intelligent multimedia data analysis. We believe that a new research topic, namely, numeric calibration, has started, which is parallel to dimensionality reduction, feature selection, or metric learning etc. Our methods can be used as a pre-processing step for metric learning methods, in which, our learned calibrated feature space is used as input for them. The various combinations of our methods and metric learning methods, may lead to new interesting research problems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Binning can be applied, if the feature data numerics are continuous, or the numerics rarely repeat in the dataset, but the performance may be suboptimal. Here binning refers to finding appropriate split points to convert continuous numerics into a number of discrete bins. See [11] for a survey and performance evaluation among several popular binning methods.
Sometimes it is called label distance, or ideal distance.
References
Cabral R, De la Torre F, Costeira JP, Bernardino A (2015) Matrix completion for weakly-supervised multilabel image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 37(1):121–135
Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(27):1–27
Chen G, Song Y, Wang F, Zhang C (2008) Semi-supervised Multi-label Learning by Solving a Sylvester Equation. SIAM Conference on Data Mining: 410–419
Fan N (2011) Learning nonlinear distance functions using neural network for regression with application to robust human age estimation. ICCV:249–254
Gao S, Tsang I, Chia L, Zhao P (2010) Local features are not lonely – Laplacian sparse coding for image classification. CVPR:1–7
Guan YP, Huang YZ (2015) Multi-pose human head detection and tracking boosted by efficient human head validation using ellipse detection. Eng Appl Artif Intell 37:181–193
Huang Y, Long Y (2006) Super-resolution using neural networks based on the optimal recovery theory. J Comput Electron 5(4):275–281
Ji S, Tang L, Yu S, Ye J (2008) Extracting shared subspace for multi-label classification. SIGKDD: 381–389
Li L, Li F (2007) What, where and who? Classifying events by scene and object recognition. ICCV:1–8
Long Y, Huang Y (2006) Image based source camera identification using demosaicking. Proceedings of IEEE 8th Workshop on Multimedia Signal Processing, Victoria, Canada, pp. 419–424.
Macskassy SA, Hirsh H, Banerjee A, Dayanik AA (2003) Converting numerical classification into text classification. Artif Intell 143(1):51–77
Naphade M, Kennedy L, Kender J, Chang S, Smith J, Over P, Hauptmann A (2005) LSCOM-lite: A light scale concept ontology for multimedia understanding for TRECVID 2005. IBM Research Tech Report RC23612(W0505-104)
Russell B, Torralba A, Murphy K, Freeman W (2008) LabelMe: a database and web-based tool for image annotation. Int J Comput Vis 77(1):157–173
Schiffman SS, Reynolds ML, Young FW (1981) Introduction to multidimensional scaling. Academic Press, NY
Sturm JF (1999) Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optimization Methods and Software 11:625–653
Sun FM, Tang JH, Li HJ, Qi GJ, Huang TS (2014) Multi-label image categorization with sparse factor representation. IEEE Trans Image Process 23(3):1028–1037
Wang C, Blei D, Li F (2009a) Simultaneous image classification and annotation, CVPR, pp. 1903--1910
Wang H, Huang H, Ding C (2009b) Image annotation using multi-label correlated green’s function. ICCV, pp: 2029–2034
Weinberger K, Blitzer J, Saul L (2006) Distance metric learning for large margin nearest neighbor classification. NIPS: 1475–1482
Xiao B, Yang X, Xu Y, Zha H (2009) Learning distance metric for regression by semidefinite programming with application to human age estimation. ACM MM:451–460
Yang L, Jin R (2006) Distance metric learning: a comprehensive survey, Technical report, Michigan State University. http://www.cs.cmu.edu/~liuy/frame_survey_v2.pdf
Yu K, Yu SP, Tresp V (2005) Multi-label informed latent semantic indexing. SIGIR: 258–265
Zha ZJ, Mei T, Wang J, Wang Z, Hua XS (2009) Graph-based semi-supervised learning with multiple labels. J Vis Commun Image Represent 20(2):97–103
Zhao GY, Ahonen T, Matas J, Pietikainen M (2012) Rotation-invariant image and video description with local binary pattern features. IEEE Trans Image Process 21(4):1465–1477
Zhou DY, Bousquet O, Lal TN,Weston J, Scholkopf B (2004) Learning with local and global consistency, NIPS
Zhu XJ, Ghahramani Z, Lafferty J (2003) Semi-supervised learning using Gaussian fields and harmonic functions. ICML: 912–919
Acknowledgments
This research work is funded by Natural Science Foundation of China (Grant No.11176016, 60872117), and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20123108110014).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, Y., Guan, Y. Learning and intelligence can happen everywhere, a case study: learning via Non-uniform 1D rulers with applications in image classification and recognition. Multimed Tools Appl 76, 913–929 (2017). https://doi.org/10.1007/s11042-015-3043-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-015-3043-1