Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Robust visual tracking based on structured sparse representation model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Sparse representation has been one of the most influential frameworks for visual tracking. However, most tracking methods based on sparse representation only consider the holistic representation and lack local information, which may lead to fail when there is similar object or occlusion in the scene. In this paper, we present a novel robust visual tracking algorithm based on structured sparse representation model. This model includes one fixed template, nine variational templates and the background templates, which are selectively updated to adapt to the appearance change of the target. And the update scheme is developed by exploiting the strength of the incremental PCA learning and sparse representation. By incorporating the block-division feature into sparse representation framework, it can capture the intrinsic structured distribution of sparse coefficients effectively and reduce the influence of the occluded target template. In addition, we propose a sparsity-based discriminative classifier, which employ the distinction of reconstruction error between the foreground and the background to improve discrimination performance for object tracking. Both qualitative and quantitative evaluations on benchmark challenging sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art tracking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), 17–22 June 2006, pp 798–805

  2. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  3. Babenko B, Yang M-H, Belongie S (2009) Visual tracking with online multiple instance learning. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), 18 June 2009, pp 983–990

  4. Babenko B, Yang M-H, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  5. Birchfield S (1998) Elliptical head tracking using intensity gradients and color histograms. In: IEEE Conference on Computer Vision and Pattern Recognition, 23–25 Jun 1998, pp 232–237

  6. Black MJ, Jepson AD (1998) Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vis 26(1):63–84

    Article  Google Scholar 

  7. CAVIAR.http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.

  8. Chen J, Shan S, Yan S, Chen X, Gao W (2006) Modification of the AdaBoost-based detector for partially occluded faces. In: 18th International Conference on Pattern Recognition (ICPR 2006), 20–24 August 2006, pp 516–519

  9. Collins R, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643

    Article  Google Scholar 

  10. Comaniciu D, Member VR (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–575

    Article  Google Scholar 

  11. Eldar YC, Kuppinger P, Bolcskei H (2010) Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans Sig Proc 58(6):3042–3054

    Article  MathSciNet  Google Scholar 

  12. Everingham M, Van Gool L, Williams C, Winn J, Zis-serman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338

    Article  Google Scholar 

  13. Grabner H, Grabner M, Bischof H (2006) Real-time tracking via online boosting. In: British Machine Vision Association (BMVC), pp 47–56

  14. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: Proc. The 10th European Conference on Computer Vision (ECCV), pp. 234–247

  15. Kaihua Zhang, Lei Zhang, Ming-Hsuan Yang (2012) Real-time compressive tracking. In: Proc. The 12th European Conference on Computer Vision (ECCV), pp. 864–877

  16. Kalal Z, Matas J, Mikolajczyk K (2010) P-n learning: bootstrapping binary classifier by structural constraints. IEEE Conference on Computer Vision and Pattern Recognition, pp 49–56

  17. Kwon J, Lee KM (2010) Visual tracking decomposition. IEEE Conference on Computer Vision and Pattern Recognition, pp 1269–1276

  18. Li Y, Ai H, Yamashita T, Lao S, Kawade M (2008) Tracking in low frame rate video: a cascade particle filter with discriminative observers of different life spans. IEEE Trans Pattern Anal Mach Intell 30(10):1728–1740

    Article  Google Scholar 

  19. Li H, Shen C, Shi Q (2011) Real-time visual tracking using compressive sensing. IEEE Conference on Computer Vision and Pattern Recognition, pp 1305–1312

  20. Liu B, Huang J, Yang L, Kulikowski CA (2011) Robust tracking using local sparse appearance model and k-selection. IEEE Conference on Computer Vision and Pattern Recognition, pp 1313–1320

  21. Liu B, Yang L, Huang J, Meer P, Gong L, Kulikowski C (2010) Robust and fast collaborative tracking with two stage sparse optimization. In: Proc. The 11th European Conference on Computer Vision (ECCV), pp.624–637

  22. Matthews I, Ishikawa T, Baker S (2004) The template update problem. IEEE Trans Pattern Anal Mach Intell 26(5):810–815

    Article  Google Scholar 

  23. Mei X, Ling H (2009) Robust visual tracking using L1 minimization. In Proceedings of the International Conference on Computer Vision, pp 1436–1443

  24. Mei X, Ling H, Wu Y, Blasch E, Bai L (2011) Minimum error bounded efficient L1 tracker with occlusion detection. IEEE Conf Comput Vis Pattern Recognit, pp. 1257–1264

  25. Pérez P, Hue C, Vermaak J (2002) Color-based probabilistic tracking. In: Proc. The 7th European Conference on Computer Vision (ECCV), pp. 661–675

  26. Ross D, Lim J, Lin R-S, Yang M-H (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141

    Article  Google Scholar 

  27. Santner J, Leistner C, Saffari A, Pock T, Bischof H (2010) PROST: parallel robust online simple tracking. IEEE Conf Comput Vis Pattern Recognit, pp.723–730

  28. Wang S, Chen F, Xu W, Yang M (2012) Online discriminative object tracking with local sparse representation. IEEE Workshop on Applications of Computer Vision (WACV), pp.425–432

  29. Wang X, Han TX, Yan S (2009) An HOG-LBP human detector with partial occlusion handling. IEEE Int. Conf. on Computer Vision (ICCV), pp.32–39

  30. Wang D, Huchuan L, Yang M (2013) Online object tracking with sparse prototypes. IEEE Trans Image Process 22(1):314–325

    Article  MathSciNet  Google Scholar 

  31. Wang S, Lu H, Yang F, Yang M-H (2011) Superpixel tracking. IEEE Conf Computer Vision, pp.1323–1330

  32. Wei Zhong, Huchuan Lu, Ming-Hsuan Yang (2012) Robust object tracking via sparsity-based collaborative model. IEEE Conf Comput Vis Pattern Recognit, pp. 1838–1845

  33. Zhang H, Liu L (2013) Recovering low-rank and sparse components of matrices for object detection. Electron Lett 49(2):109–111

    Article  Google Scholar 

  34. Zhang S, Yao H, Sun X, Liu S (2010) Robust object tracking based on sparse representation. SPIE Int. Conf. on Visual Communication and Image Processing (VCIP), 77441N–1–8

  35. Zhang S, Yao H, Sun X, Lu X (2013) Sparse coding based visual tracking: review and experimental comparison. Pattern Recogn 46(7):1772–1788

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Chinese Forestry Industry Research Special Funds for Public Welfare (Grant No.201104090). The Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP)(20120161110014), New Century Excellent Talents in University (NCET-11-0134), National Natural Science Foundation of China (61072122), and Key Project of Hunan Provincial Natural Science Foundation (11JJ2053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Tao, F. & Yang, G. Robust visual tracking based on structured sparse representation model. Multimed Tools Appl 74, 1021–1043 (2015). https://doi.org/10.1007/s11042-013-1709-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1709-0

Keywords

Navigation