Abstract
Island Model (IM) is an alternative often used to parallel Evolutionary Algorithms (EA). In IM, the population is distributed between islands that evolve their solutions in parallel, connected by a topology. Periodically, solutions migrate between islands according to a migration policy. The IM can be seen as an ideal structure to combine different algorithms to be used in an organized and cooperative way to solve a problem. Motivated by the number and distinction of EAs proposed in the last decades, in terms of performance and evolutionary behavior, this work proposes a hybrid configuration for IM, called Stigmergy Island Model (Stgm-IM), inspired by the natural phenomenon of stigmergy. Stigmergy is present in groups of some social species, and, by it, their agents organize themselves and maintain a level of cooperation through indirect communication. The Stgm-IM was evaluated regarding its evolutionary behavior and its performance on a benchmark suite of fifteen optimization problems, showing expected results.
Adapted from Dorigo et al. (2000)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abdelhafez A, Alba E, Luque G (2019) Performance analysis of synchronous and asynchronous distributed genetic algorithms on multiprocessors. Swarm Evol Comput 49:147–157. https://doi.org/10.1016/j.swevo.2019.06.003
Alba E (2005) Parallel metaheuristics: a new class of algorithms. Wiley, Hoboken
Bessaou M, Pétrowski A, Siarry P (2000) Island model cooperating with speciation for multimodal optimization. In: Schoenauer M, Deb K, Rudolph G, Yao X, Lutton E, Merelo JJ, Schwefel HP (eds) Parallel problem solving from nature PPSN VI. Springer, Berlin, pp 437–446
Bilal PM, Zaheer H, Garcia-Hernandez L, Abraham A (2020) Differential evolution: a review of more than two decades of research. Eng Appl Artif Intell 90:103479
Bodenhofer U (2002) Genetic algorithms: theory and applications. Fuzzy Logic Laboratorium Linz, Hagenberg
Bonabeau E (1998) Social insect colonies as complex adaptive systems. Ecosystems 1(5):437–443
Candan C, Goeffon A, Lardeux F, Saubion F (2012) A dynamic island model for adaptive operator selection. In: Proceedings of the 14th annual conference on genetic and evolutionary computation, GECCO’12, pp. 1253–1260. Association for Computing Machinery, New York, NY, USA
Cantú-Paz E (1998) A survey of parallel genetic algorithms. Calculateurs paralleles, reseaux et systems repartis 10(2):141–171
Cantú-Paz E (2001) Migration policies, selection pressure, and parallel evolutionary algorithms. J Heuristics 7(4):311–334
Capriles PVSZ, Fonseca LG, Barbosa HJC, Lemonge ACC (2007) Rank-based ant colony algorithms for truss weight minimization with discrete variables. Commun Numer Methods Eng 23(6):553–575
Cheong PY, Aggarwal D, Hanne T, Dornberger R (2017) Variation of ant colony optimization parameters for solving the travelling salesman problem. In: 2017 IEEE 4th international conference on soft computing machine intelligence (ISCMI), pp 60–65
Crainic TG, Toulouse M (2003) Parallel strategies for meta-heuristics. Springer, Boston, pp 475–513
Dolan ED, More JJ (2002) Benchmarking optimization software with performance profiles. Math Progr 91(2):201–213
Dorigo M, Bonabeau E, Theraulaz G (2000) Ant algorithms and stigmergy. Fut Gen Comput Syst 16(8):851–871
Dorigo M, Stützle T (2010) Ant colony optimization: overview and recent advances. Springer, Boston, pp 227–263
Duarte G, Lemonge A, Goliatt L (2017) A dynamic migration policy to the island model. In: 2017 IEEE congress on evolutionary computation (CEC), pp 1135–1142
Duarte G, Lemonge A, Goliatt L (2018) A new strategy to evaluate the attractiveness in a dynamic island model. In: 2018 IEEE congress on evolutionary computation (CEC), pp 1–8
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, MHS’95. IEEE, pp 39–43
Gaertner D, Clark K (2005) On optimal parameters for ant colony optimization algorithms. In: Proceedings of the international conference on artificial intelligence 2005. CSREA Press, pp 83–89
Guan W, Szeto KY (2013) Topological effects on the performance of island model of parallel genetic algorithm. In: Proceedings of the 12th international conference on artificial neural networks: advances in computational intelligence—volume part II, IWANN’13. Springer, Heidelberg, pp 11–19
Gustafson S, Burke EK (2006) The speciating island model: an alternative parallel evolutionary algorithm. J Parall Distrib Comput 66(8):1025–1036 (special issue: parallel bioinspired algorithms)
Holland JH (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2(2):88–105
Izzo D, Rucinski M, Ampatzis C (2009) Parallel global optimisation meta-heuristics using an asynchronous island-model. In: 2009 IEEE congress on evolutionary computation, pp 2301–2308
Jadaan OA, Rajamani L, Rao CR (2005) Improved selection operator for ga. J Theor Appl Inf Technol 4:269–277
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report TR06, Erciyes University, Engineering Faculty, Kayseri, Turkiye
Karaboga D, Basturk B (2007) Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems. In: Foundations of fuzzy logic and soft computing, vol 4529, pp 789–798. Springer, Berlin
Kurdi M (2015) A new hybrid island model genetic algorithm for job shop scheduling problem. Comput Ind Eng 88(Supplement C):273–283
Lardeux F, Maturana J, Rodriguez-Tello E, Saubion F (2019) Migration policies in dynamic island models. Nat Comput Int J 18(1):163–179. https://doi.org/10.1007/s11047-017-9660-z
Li C, Yang S (2008) An island based hybrid evolutionary algorithm for optimization. Springer, Berlin, pp 180–189
Liang JJ, Qu BY, Suganthan PN, Chen Q (2014) Problem definitions and evaluation criteria for the cec 2015 competition on learning-based real-parameter single objective optimization. Technical report, Nanyang Technological University
Lynn N, Ali MZ, Suganthan PN (2018) Population topologies for particle swarm optimization and differential evolution. Swarm Evol Comput 39:24–35
Ma H, Shen S, Yu M, Yang Z, Fei M, Zhou H (2019) Multi-population techniques in nature inspired optimization algorithms: a comprehensive survey. Swarm Evol Comput 44:365–387
Magalhaes TT, Krempser E, Barbosa HJC (2015) Migration policies to improve exploration in parallel island models for optimization via metaheuristics. In: Proceedings of the XXXVII Ibero-Latin American congress on computational methods in engineering, CILAMCE 2015
Meng Q, Wu J, Ellis J, Kennedy PJ (2017) Dynamic island model based on spectral clustering in genetic algorithm. In: 2017 international joint conference on neural networks (IJCNN), pp 1724–1731
Mezura-Montes E, Velázquez-Reyes J, Coello Coello CA (2006) A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th annual conference on genetic and evolutionary computation, GECCO’06, pp 485–492. ACM, New York
Parpinelli RS, Lopes HS (2012) An ecology-based heterogeneous approach for cooperative search. In: Barros LN, Finger M, Pozo AT, Gimenénez-Lugo GA, Castilho M (eds) Advances in artificial intelligence—SBIA 2012. Springer, Berlin, pp 212–221
Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57
Ruciński M, Izzo D, Biscani F (2010) On the impact of the migration topology on the island model. Parallel Comput 36(10–11):555–571 (parallel architectures and bioinspired algorithms)
Skolicki ZM (2007) An analysis of island models in evolutionary computation. Ph.D. thesis, Fairfax, VA, USA
Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359
Ursem RK (2000) Multinational gas: multimodal optimization techniques in dynamic environments. In: Proceedings of the 2nd annual conference on genetic and evolutionary computation, GECCO’00, pp 19–26. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
Yu JJ, Li VO (2015) A social spider algorithm for global optimization. Appl Soft Comput 30:614–627
Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015:1–38
Acknowledgements
The authors acknowledge the support of Graduate Program in Computational Modeling at Federal University of Juiz de Fora (UFJF) and the Brazilian funding agencies CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant Numbers 306186/2017, 429639/2016 and 306069/2016), FAPEMIG (APQ-00334/18), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), finance code 001. This research was developed with the support of the Núcleo Avançado de Computação de Alto Desempenho (NACAD) at COPPE, Federal University of Rio de Janeiro (UFRJ). The authors would like to thanks the reviewers for the corrections and suggestions, which helped improve the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Some definitions (Liang et al. 2014):
-
All test functions are minimization problems given by the form
$$\begin{aligned} \left\{ \begin{array}{ll} {\text {Minimize }}f({{\mathbf{x }}})\\ {\mathbf{x}} \in {\mathbb {R}}^D \end{array}, \right. \end{aligned}$$where \(f({{\mathbf{x }}})\) is the objective function, \({{\mathbf{x }}} \in [-100, 100]^D\) and \(D \in \{10, 30, 50, 100\}\) is the dimension of the problem.
-
\({\mathbf{o }}_i \in [-80, 80]^D\), such that \(i \in \{1, 2,\ldots , 15\}\), is the global optimal solution of the problem Fi displacement by rotation.
-
\({\mathbf{M }}_i\) is the rotation matrix of the problem Fi produced by the normal orthogonalization process by the method Gram-Schmidt in a random matrix.
-
\(Fi^* = Fi({{\mathbf{x }}}^*)\), where \(i \in \{1, 2,\ldots , 15\}\), \({\mathbf{x }}^*\) is the optimal solution of the problem Fi and \(Fi({\mathbf{x }}^*) = i \times 100\).
Definition of the basic functions:
-
\(f_1\)
$$\begin{aligned} f_1({\mathbf{x }}) = \displaystyle \sum _{i = 1}^{i = D}{(10^6)^{\frac{i - 1}{D - 1}}{\text {x}}_i^2} \end{aligned}$$ -
\(f_2\)
$$\begin{aligned} f_2({\mathbf{x }}) = {\text {x}}_1^2 + 10^6 \displaystyle \sum _{i = 2}^{i = D}{{\text {x}}_i^2} \end{aligned}$$ -
\(f_3\)
$$\begin{aligned} f_3({\mathbf{x }}) = 10^6{\text {x}}_1^2 + \displaystyle \sum _{i = 2}^{i = D}{{\text {x}}_i^2} \end{aligned}$$ -
\(f_4\)
$$\begin{aligned} f_4({\mathbf{x }}) = \displaystyle \sum _{i = 1}^{i = D - 1}{(100({\text {x}}_i^2 - {\text {x}}_{i + 1})^2 + ({\text {x}}_i -1)^2)} \end{aligned}$$ -
\(f_5\)
$$\begin{aligned} f_5({\mathbf{x }}) = \displaystyle -20{\text {exp}}\left( -0.2\sqrt{\frac{1}{D}\sum _{i = 1}^{i = D}{{\text {x}}_i^2}}\right) - {\text {exp}}\left( \frac{1}{D}\sum _{i = 1}^{i + D}{{\text {cos}}(2\pi {\text {x}}_i)}\right) + 20 + e \end{aligned}$$ -
\(f_6\)
$$\begin{aligned} f_6({\mathbf{x }}) = \displaystyle \sum _{i = 1}^{i = D}{\left( \sum _{k = 0}^{k = 20}{[0.5^k {\text {cos}}(2 \pi 3^k({\text {x}}_i + 0.5))]}\right) } - D \sum _{k = 0}^{k = 20}{[0.5^k {\text {cos}}(2 \pi 3^k \times 0.5)]} \end{aligned}$$ -
\(f_7\)
$$\begin{aligned} f_7({\mathbf{x }}) = \displaystyle \sum _{i = 1}^{i = D}{\frac{{\text {x}}_i^2}{4000}} - \prod _{i = 1}^{i = D}{{\text {cos}}\left( \frac{{\text {x}}_i}{\sqrt{i}}\right) } + 1 \end{aligned}$$ -
\(f_8\)
$$\begin{aligned} f_8({\mathbf{x }}) = \displaystyle \sum _{i = 1}^{i = D}{({\text {x}}_i^2 - 10 {\text {cos}}(2 \pi {\text {x}}_i) - 10)} \end{aligned}$$ -
\(f_9\)
$$\begin{aligned} f_9({\mathbf{x }}) = 418.9829 \times D - \displaystyle \sum _{i = 1}^{i = D}{g(z_i)}, \end{aligned}$$where \(z_i = {\text {x}}_i + 4.209687462275036\)e+002 and
$$\begin{aligned} g(z_i) = \left\{ \begin{array}{lllllll} z_i {\text {sin}}(|z_i|^{\frac{1}{2}}), {\text { se }} |z_i| \le 500 \\ \\ \displaystyle (500 - {\text {mod}}(z_i, 500)) {\text {sin}}(\sqrt{|500 - {\text {mod}}(z_i, 500)|}) - \\ \displaystyle \frac{(z_i - 500)^2}{10{,}000D}, {\text { se }} z_i > 500 \\ \\ \displaystyle ({\text {mod}}(|z_i| - 500) - 500) {\text {sin}}(\sqrt{|{\text {mod}}(|z_i|, 500) - 500|}) - \\ \displaystyle \frac{(z_i + 500)^2}{10{,}000D}, {\text { se }} z_i < -500 \end{array} \right. \end{aligned}$$ -
\(f_{10}\)
$$\begin{aligned} f_{10}({\mathbf{x }}) = \displaystyle \frac{10}{D^2} \prod _{i = 1}^{i = D}{\left( 1 + i \sum _{j = 1}^{j = 32}{\frac{|2^j {\text {x}}_i - {\text {round}}(2^j {\text {x}}_i)|}{2^j}}\right) ^{\frac{10}{D^{1.2}}}} - \frac{10}{D^2} \end{aligned}$$ -
\(f_{11}\)
$$\begin{aligned} f_{11}({\mathbf{x }}) = \displaystyle \left| \sum _{i = 1}^{i = D}{{\text {x}}_i^2 - D}\right| ^{\frac{1}{4}} + \frac{\left( 0.5 \displaystyle \sum \nolimits _{i = 1}^{i = D}{{\text {x}}_i^2} + \sum \nolimits _{i = 1}^{i = D}{{\text {x}}_i}\right) }{D} + 0.5 \end{aligned}$$ -
\(f_{12}\)
$$\begin{aligned} f_{12}({\mathbf{x }}) = \displaystyle \left| \left( \sum _{i = 1}^{i = D}{{\text {x}}_i^2}\right) ^2 - \left( \sum _{i = 1}^{i = D}{{\text {x}}_i}\right) ^2\right| ^{\frac{1}{2}} + \displaystyle \frac{\left( 0.5 \displaystyle \sum \nolimits _{i = 1}^{i = D}{{\text {x}}_i^2} + \sum \nolimits _{i = 1}^{i = D}{{\text {x}}_i}\right) }{D} + 0.5 \end{aligned}$$ -
\(f_{13}\)
$$\begin{aligned} f_{13}({\mathbf{x }}) = f_7(f_4({\text {x}}_1, {\text {x}}_2)) + f_7(f_4({\text {x}}_2, {\text {x}}_3)) + \cdots + f_7(f_4({\text {x}}_{D - 1}, {\text {x}}_D)) + f_7(f_4({\text {x}}_D, {\text {x}}_1)) \end{aligned}$$ -
\(f_{14}\)
$$\begin{aligned} f_{14}({\mathbf{x }}) = g({\text {x}}_1, {\text {x}}_2) + g({\text {x}}_2, {\text {x}}_3) + \cdots + g({\text {x}}_{D - 1}, {\text {x}}_D) + g({\text {x}}_D, {\text {x}}_1) \end{aligned}$$where
$$\begin{aligned} g({\text {y}}, {\text {z}}) = 0.5 + \displaystyle \frac{(z{sin}^2(\sqrt{{\text {y}}^2 + {\text {z}}^2}) - 0.5)}{(1 + 0.001({\text {y}}^2 + {\text {z}}^2))^2} \end{aligned}$$
Definition of the test functions:
-
Unimodal Functions:
-
F1
$$\begin{aligned} F1({\mathbf{x }}) = f_1({\mathbf{M }}_1({\mathbf{x }} - {\mathbf{o }}_1)) + F1^* \end{aligned}$$ -
F2
$$\begin{aligned} F2({\mathbf{x }}) = f_2({\mathbf{M }}_2({\mathbf{x }} - {\mathbf{o }}_2)) + F2^* \end{aligned}$$
-
Simple Multimodal Functions:
-
F3
$$\begin{aligned} F3({\mathbf{x }}) = f_5({\mathbf{M }}_3({\mathbf{x }} - {\mathbf{o }}_3)) + F3^* \end{aligned}$$ -
F4
$$\begin{aligned} F4({\mathbf{x }}) = f_8\left( {\mathbf{M }}_4\left( \displaystyle \frac{5.12({\mathbf{x }} - {\mathbf{o }}_4)}{100}\right) \right) + F4^* \end{aligned}$$ -
F5
$$\begin{aligned} F5({\mathbf{x }}) = f_9\left( {\mathbf{M }}_5\left( \displaystyle \frac{1000({\mathbf{x }} - {\mathbf{o }}_5)}{100}\right) \right) + F5^* \end{aligned}$$
Hybrid Functions:
-
For such functions consider:
$$\begin{aligned} FH({\mathbf{x }}) = g_1({\mathbf{M }}_1{\mathbf{z }}_1) + g_2({\mathbf{M }}_2{\mathbf{z }}_2) + \cdots + g_N({\mathbf{M }}_N{\mathbf{z }}_N) + F^*({\mathbf{x }}), \end{aligned}$$where
-
\(FH({\mathbf{x }})\), such that \(H \in \{6, 7, 8\}\) is a Hybrid Function.
-
\(g_i({\mathbf{x }})\) is the ith basic function involved in a Hybrid Function.
-
N is the number of basic functions.
-
\({\mathbf{z }} = [{\mathbf{z }}_1, {\mathbf{z }}_2,\ldots , {\mathbf{z }}_N]\)
-
\({\mathbf{z }}_1 = [{\mathbf{y }}_{S_1}, \mathbf{y} _{S_2},\ldots , {\mathbf{y }}_{S_{n_1}}]\), \({\mathbf{z }}_2 = [{\mathbf{y }}_{S_{n_1 + 1}}, {\mathbf{y }}_{S_{n_1 + 2}},\ldots , {\mathbf{y }}_{S_{n_1 + n_2}}]\),
-
\({\mathbf{z }}_N = [{\mathbf{y }}_{S_{\sum _{i = 1}^{N - 1}{n_i + 1}}}, {\mathbf{y }}_{S_{\sum _{i = 1}^{N - 1}{n_i + 2}}},\ldots , {\mathbf{y }}_{S_{D}}]\)
-
\({\mathbf{y }} = {\mathbf{x }} - {\mathbf{o }}_i\)
-
\(S = {\text {permutacao}}(1:D)\)
-
\(p_i\) is used to control the percentage of \(g_i({\mathbf{x }})\)
-
\(n_i\) is the dimension for each basic function. \(\sum _{i = 1}^{i = N}{n_i} = D\)
-
\(n_1 = \lceil p_1 D \rceil\), \(n_2 = \lceil p_2 D \rceil\),..., \(n_{N - 1} = \lceil p_{N - 1} D \rceil\), \(n_{N} = D - \displaystyle \sum _{i = 1}^{i = N - 1}{n_i}\)
-
-
F6
-
\(N = 3\)
-
\(p = [0.3, 0.3, 0.4]\)
-
\(g_1 = f_9\)
-
\(g_2 = f_8\)
-
\(g_3 = f_1\)
-
-
F7
-
\(N = 4\)
-
\(p = [0.2, 0.2, 0.3, 0.3]\)
-
\(g_1 = f_7\)
-
\(g_2 = f_6\)
-
\(g_3 = f_4\)
-
\(g_4 = f_{14}\)
-
-
F8
-
\(N = 5\)
-
\(p = [0.1, 0.2, 0.2, 0.2, 0.3]\)
-
\(g_1 = f_{14}\)
-
\(g_2 = f_{12}\)
-
\(g_3 = f_4\)
-
\(g_4 = f_9\)
-
\(g_5 = f_1\)
-
Composed Functions:
-
For such functions consider:
$$\begin{aligned} FC({\mathbf{x }}) = \displaystyle \sum _{i = 1}^{N}{\{\omega _i[\lambda _i g_i({\mathbf{x }}) + bias_i]\} + F^*}, \end{aligned}$$where
-
\(FC({\mathbf{x }})\), such that \(C \in \{9, 10, 11, 12, 13, 14, 15\}\) is a Composed Function.
-
N is the number of basic functions.
-
\(g_i({\mathbf{x }})\) is the ith basic function involved in a Composed Function.
-
\(\lambda _i\) is used to control the height of each \(g_i({\mathbf{x }})\).
-
\(bias_i\) define which optimal is the global optimal.
-
\(\omega _i\) is given by
$$\begin{aligned} \omega _i = \frac{{\text {w}}_i}{\sum \nolimits _{i = 1}^{n}{{\text {w}}_i}} \end{aligned}$$where \({\text {w}}_i\) is given by
$$\begin{aligned} {\text {w}}_i = \frac{1}{\sqrt{\sum \nolimits _{j = 1}^{j = D}{({\text {x}}_j - {\text {o}}_{ij})^2}}} {\text {exp}} \left( -\frac{\sum \nolimits _{j = 1}^{j = D}{({\text {x}}_j - {\text {o}}_{ij})^2}}{2 D \sigma _i^2}\right) , \end{aligned}$$where
-
\({\mathbf{o }}_i\) is a new optimal solution defined for each \(g_i({\mathbf{x }})\).
-
\(\sigma _i\) is used to control the range of each \(g_i({\mathbf{x }})\).
-
-
-
F9
-
\(N = 3\)
-
\(\sigma = [20, 20, 20]\)
-
\(\lambda = [1, 1, 1]\)
-
\(bias = [0, 100, 200]+F9^*\)
-
\(g_1 = F5\)
-
\(g_2 = F4\)
-
\(g_3 = f_{12}\)
-
-
F10
-
\(N = 3\)
-
\(\sigma = [10, 30, 50]\)
-
\(\lambda = [1, 1, 1]\)
-
\(bias = [0, 100, 200]+F{10}^*\)
-
\(g_1 = F6\)
-
\(g_2 = F7\)
-
\(g_3 = F8\)
-
-
F11
-
\(N = 5\)
-
\(\sigma = [10, 10, 10, 20, 20]\)
-
\(\lambda = [10, 10, 2.5, 25, 1\)e−6]
-
\(bias = [0, 100, 200, 300, 400]+F{11}^*\)
-
\(g_1 = f_{12}\)
-
\(g_2 = F4\)
-
\(g_3 = F5\)
-
\(g_4 = f_6\)
-
\(g_5 = F1\)
-
-
F12
-
\(N = 5\)
-
\(\sigma = [10, 20, 20, 30, 30]\)
-
\(\lambda = [0.25, 1, 1\)e−7, 10, 10]
-
\(bias = [0, 100, 100, 200, 200]+F{12}^*\)
-
\(g_1 = F5\)
-
\(g_2 = F4\)
-
\(g_3 = F1\)
-
\(g_4 = f_{14}\)
-
\(g_5 = f_{11}\)
-
-
F13
-
\(N = 5\)
-
\(\sigma = [10, 10, 10, 20, 20]\)
-
\(\lambda = [1, 10, 1, 25, 10]\)
-
\(bias = [0, 100, 200, 300, 400]+F{13}^*\)
-
\(g_1 = F8\)
-
\(g_2 = F4\)
-
\(g_3 = F6\)
-
\(g_4 = F5\)
-
\(g_5 = f_{14}\)
-
-
F14
-
\(N = 7\)
-
\(\sigma = [10, 20, 30, 40, 50, 50, 50]\)
-
\(\lambda = [10, 2.5, 2.5, 10, 1\)e−6, 1e−6, 10]
-
\(bias = [0, 100, 200, 300, 300, 400, 400]+F{14}^*\)
-
\(g_1 = f_{11}\)
-
\(g_2 = f_{13}\)
-
\(g_3 = F5\)
-
\(g_4 = f_{14}\)
-
\(g_5 = F1\)
-
\(g_6 = F2\)
-
\(g_7 = F4\)
-
-
F15
-
\(N = 10\)
-
\(\sigma = [10, 10, 20, 20, 30, 30, 40, 40, 50, 50]\)
-
\(\lambda = [0.1, 2.5\)e−1, 0.1, 2.5e−2, 1e−3, 0.1, 1e−5, 10, 2.5e−2, 1e−3]
-
\(bias = [0, 100, 100, 200, 200, 300, 300, 400, 400, 500]+F{15}^*\)
-
\(g_1 = F4\)
-
\(g_2 = f_{6}\)
-
\(g_3 = f_{11}\)
-
\(g_4 = F5\)
-
\(g_5 = f_4\)
-
\(g_6 = f_{12}\)
-
\(g_7 = f_{10}\)
-
\(g_8 = f_{14}\)
-
\(g_9 = f_{13}\)
-
\(g_{10} = F3\)
-
Rights and permissions
About this article
Cite this article
Duarte, G.R., de Castro Lemonge, A.C., da Fonseca, L.G. et al. An Island Model based on Stigmergy to solve optimization problems. Nat Comput 20, 413–441 (2021). https://doi.org/10.1007/s11047-020-09819-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11047-020-09819-x