Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Interference as a computational resource: a tutorial

  • Published:
Natural Computing Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. Equivalently, \({\mathbf {N}}{\mathbf {P}}\) is the class of the decision problems that can be verified in polynomial time, when a certificate is given. See Papadimitriou (1994) for details.

  2. In fact, the computation tree in Fig. 5 shows that \(W^2\mid \! 0\rangle =\mid \! 0\rangle\), and it is equally easy to see that \(W^2\mid \! 1\rangle =\mid \! 1\rangle.\)

  3. Characteristic functions \(f_g\) defined as \(f_g(g')=1\) if \(g=g'\) and 0 otherwise clearly form a basis (called the natural basis) for the function space \(G\rightarrow {\mathbb {C}}\).

References

  • Aaronson S (2013) Quantum computing since Democritus. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Adleman LM, Demarrais J, Huang M-DA (1997) Quantum computability. SIAM J Comput 26(5):1524–1540

    Article  MathSciNet  MATH  Google Scholar 

  • Ambainis A, Yakaryılmaz A (2017) Automata and quantum computing, a manuscript. arXiv:1507.01988, read 03 Jul

  • Benioff P (1980) The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by turing machines. J Stat Phys 22(5):563–591

    Article  MathSciNet  Google Scholar 

  • Deutsch D (1985) Quantum theory, the Church–Turing principle and the universal quantum computer. Proc R Soc Lond A 400:97–117

    Article  MathSciNet  MATH  Google Scholar 

  • Deutsch D, Jozsa R (1992) Rapid solutions of problems by quantum computation. Proc R Soc Lond A 439:553–558

    Article  MathSciNet  MATH  Google Scholar 

  • Eilenberg S (1974) Automata, languages, and machines. Academic Press, New York

    MATH  Google Scholar 

  • Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467–488

    Article  MathSciNet  Google Scholar 

  • Feynman RP (1987) Negative probability. In: Hiley Basil J, Peat D (eds) Quantum implications: essays in honour of David Bohm. Routledge, Abingdon, pp 235–248

    Google Scholar 

  • Freivalds R (1981) Probabilistic two-way machines. Proc Math Found Comput Sci LNCS 188:33–45

    MathSciNet  MATH  Google Scholar 

  • Gill J (1977) Computational complexity of probabilistic turing machines. SIAM J Comput 6(4):675–695

    Article  MathSciNet  MATH  Google Scholar 

  • Hardy GH, Wright EM (1979) An introduction to the theory of numbers, 5th edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Hirvensalo M (2004) Quantum computing, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hirvensalo M (2008) Various aspects of finite quantum automata. LNCS 5257 (Proceedings of DLT 2008), pp 21–33

  • Hirvensalo M (2010) Quantum automata with open time evolution. Int J Nat Comput Res 1:70–85

    Article  Google Scholar 

  • Hirvensalo M (2012) Mathematics for quantum information processing. In: Rozenberg G, Bck T, Kok J (eds) Handbook of natural computing. Springer, Berlin

    Google Scholar 

  • Manin Y (1980) Computable and uncomputable. Sovetskoye Radio, Moscow (in Russian)

    Google Scholar 

  • Papadimitriou CH (1994) Computational complexity. Pearson, London

    MATH  Google Scholar 

  • Paz A (1971) Introduction to probabilistic automata. Academic Press, Cambridge

    MATH  Google Scholar 

  • Planck M (1900) Annalen der Physik 1:69; Verhandlg dtsch phys Ges 2:202; Verhandlg dtsch phys Ges 2:237; Annalen der Physik 4:553 (1901)

  • Rabin MO (1963) Probabilistic automata. Inf Control 6:230–245

    Article  MATH  Google Scholar 

  • Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th annual symposium on foundations of computer science, 20–22. IEEE Computer Society Press, pp 124–134

  • Shoup V (1997) Lower bounds for discrete logarithms and related problems. Lect Notes Comput Sci 1233:256–266

    Article  MathSciNet  Google Scholar 

  • Simon D (1994) On the power of quantum computation. In: Proceedings of the 35th IEEE symposium on foundations of computer science, pp 116–123

  • Turakainen P (1969a) On probabilistic automata and their generalizations. Annales Academiae Scientiarum Fennicae. Series A 429

  • Turakainen P (1969b) On languages representable in rational probabilistic automata. Annales Academiae Scientiarum Fennicae. Series A 439

  • Sheng Y (1997) Regular languages. In: Rozenberg G, Salomaa A (eds) Handbook of formal languages, vol 1. Springer, Berlin

    Google Scholar 

  • von Neumann J (1932) Mathematische Grundlagen der Quantenmechanik. Springer, Berlin

    MATH  Google Scholar 

  • Young T (1802) The Bakerian lecture: on the theory of light and colours. Philos Trans R Soc Lond 92:12–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Hirvensalo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirvensalo, M. Interference as a computational resource: a tutorial. Nat Comput 17, 201–219 (2018). https://doi.org/10.1007/s11047-017-9654-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-017-9654-x

Navigation