Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A hybrid active contour model based on global and local information for medical image segmentation

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

For segmenting medical images with abundant noise, blurry boundaries, and intensity heterogeneities effectively, a hybrid active contour model that synthesizes the global information and the local information is proposed. A novel global energy functional is constructed, together with an adaptive weight by the statistical information of image pixels on the clustering idea. Minimizing this global energy functional in a variational level set formulation will drive the curve to desirable boundaries. The local energy functional contains the local threshold, which is used to correct the deviation of the level set function. Experiments demonstrate that the proposed method can segment synthetic and medical images effectively, and have a relatively higher performance compared to other representative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ali, H., Badshah, N., Chen, K., & Khan, G. (2016). A variational model with hybrid images data fitting energies for segmentation of images with intensity inhomogeneity. Pattern Recognition, 51, 27–42.

    Article  MATH  Google Scholar 

  • Chan, T., & Vese, L. (2001). Active contour without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Fang, L. L., Zhao, W. T., Li, X. Y., & Wang, X. H. (2017). A convex active contour model driven by local entropy energy with applications to infrared ship target segmentation. Optics Laser Technology, 96, 166–175.

    Article  Google Scholar 

  • Feinberg, E. A., Kasyanov, P. O., & Zadoianchuk, N. V. (2014). Fatou’s lemma for weakly converging probabilities. Theory of Probability & Its Applications, 58(4), 683–689.

    Article  MathSciNet  MATH  Google Scholar 

  • Gloger, O., Tönnies, K., Bülow, R., & Voelzke, H. (2017). Automatized spleen segmentation in non-contrast-enhanced MR volume data using subject-specific shape priors. Physics in Medicine & Biology, 62(14), 5861–5883.

    Article  Google Scholar 

  • Hald, A. H. (2015). The truncated normal distribution. In Statistics for research (3rd ed., p. 661). John Wiley & Sons Inc. 2005.

  • Jayadevappa, D., Kumar, S., & Murty, D. (2011). Medical image segmentation algorithms using deformable models: A review. IETE Technical Review, 28(3), 248–255.

    Article  Google Scholar 

  • Lankton, S., & Tannenbaum, A. (2008). Localizing region-based active contours. IEEE Transactions on Image Processing, 17(11), 2029–2039.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C., Kao, C., Gore, J., & Ding, Z. (2008). Minimization of region-scalable fitting energy for image segmentation. IEEE Transactions on Image Processing, 17(10), 1940–1949.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C., Wang, X., Eberl, S., Fulham, M., & Feng, D. (2013a). Robust model for segmenting images with/without intensity inhomogeneities. IEEE Transactions on Image Processing, 22(8), 3296–3309.

    Article  Google Scholar 

  • Li, C., Wang, X., Eberl, S., Fulham, M., Yin, Y., Chen, J., et al. (2013b). A likelihood and local constraint level set model for liver tumor segmentation from CT volumes. IEEE Transactions on Biomedical Engineering, 60(10), 2967–2977.

    Article  Google Scholar 

  • Liu, J., Wu, Q. J., Kirkpatrick, J. P., Yin, F. F., Yuan, L., & Ge, Y. (2015). From active shape model to active optical, flow model: A shape-based approach to, predicting voxel-level dose distributions in, spine SBRT. Physics in Medicine & Biology, 60(5), 83–92.

    Article  Google Scholar 

  • Mabood, L., Ali, H., Badshah, N., & Ullah, T. (2015). Absolute median deviation based a robust image segmentation model. Journal of Information and Communication Technology, 9(1), 13–22.

    Google Scholar 

  • Mylona, E., Savelonas, M., & Maroulis, D. (2014). Automated adjustment of region-based active contour parameters using local image geometry. IEEE Transactions on Cybernetics, 44(12), 2757–2770.

    Article  Google Scholar 

  • Nezza, E. D., Palatucci, G., & Valdinoci, E. (2011). Hitchhikerʼs guide to the fractional Sobolev spaces. Bulletin Des Sciences Mathématiques, 136(5), 521–573.

    Article  MathSciNet  MATH  Google Scholar 

  • Patel, S., Garasia, S., Jinwala, D. (2017). An efficient approach for privacy preserving distributed K-means clustering based on shamir’s secret sharing scheme. In Trust management VI 2017 (pp. 129–141).

  • Wang, L., Chang, Y., Wang, H., Wu, Z., Pu, J. T., & Yang, X. D. (2017). An active contour model based on local fitted images for image segmentation. Information Sciences, 418–419, 61–73.

    Article  Google Scholar 

  • Wang, B., Gao, X., Tao, D., & Li, X. (2014a). A nonlinear adaptive level set for image segmentation. IEEE Transactions on Cybernetics, 44(3), 418–428.

    Article  Google Scholar 

  • Wang, H., & Liu, M. (2013). Active contours driven by local gaussian distribution fitting energy based on local entropy. International Journal of Pattern Recognition and Artificial Intelligence, 27(6), 1073–1089.

    Article  MathSciNet  Google Scholar 

  • Wang, L., Shi, F., Li, G., Gao, Y., Lin, W., Gilmore, J., et al. (2014b). Segmentation of neonatal brain mr images using patch-driven level sets. NeuroImage, 84(1), 141–158.

    Article  Google Scholar 

  • Yang, X., Gao, X., Li, J., & Han, B. (2014). A shape-initialized and intensity-adaptive level set method for auroral oval segmentation. Information Sciences, 277(2), 794–807.

    Article  Google Scholar 

  • Zhang, L., & Zhang, D. (2016). Visual understanding via multi-feature shared learning with global consistency. IEEE Transactions on Multimedia, 18(2), 247–259.

    Article  Google Scholar 

  • Zhang, K. H., & Zhou, W. G. (2008). An improved CV active contour model. Optoelectronic Components, 35(12), 112–116.

    Google Scholar 

  • Zhang, L., Zuo, W., & Zhang, D. (2016). LSDT: Latent sparse domain transfer learning for visual adaptation. IEEE Transactions on Image Processing, 25(3), 1177–1191.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, Y., Rada, L., Chen, K., Harding, S., & Zheng, Y. (2015). Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Transactions on Medical Imaging, 34(9), 1797–1807.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation under Grant 2017M621130, Liaoning Provincial Natural Science Fund Guidance Plan under Grant 201602228, Natural Science Foundations of China under Grant 61172108, 61139001, 81241059, 61671105, and 41671439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianshuang Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Qiu, T., Zhao, H. et al. A hybrid active contour model based on global and local information for medical image segmentation. Multidim Syst Sign Process 30, 689–703 (2019). https://doi.org/10.1007/s11045-018-0578-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0578-0

Keywords

Navigation