Abstract
In this paper, we design a measurement matrix for a compressive sensing-multiple-input multiple-output radar in the presence of clutter and interference. To optimize the measurement matrix, three main criteria are considered simultaneously to improve detection and sparse recovery performance while suppressing clutter and interference. To this end, we consider three well-known criteria including Bhattacharyya distance, mutual coherency of sensing matrix, and signal-to-clutter-plus-interference ratio. Due to the use of simultaneous multi-objective functions, a multi-objective optimization (MOO) framework is exploited. Some numerical examples are provided to illustrate the achieved improvement of our proposed method in target detection and sparse recovery performance. Simulation results show that the proposed MOO technique for measurement matrix design can achieve superior performance in target detection compared with Gaussian random measurement matrix technique.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abolghasemi, V., Ferdowsi, S., Makkiabadi, B., & Sanei, S. (2010). On optimization of the measurement matrix for compressive sensing. In Proceedings European signal processing conference (pp. 427–431).
Abraham, A., & Jain, L. (2005). Evolutionary multiobjective optimization. Theoretical advances and applications (pp. 105–145). Berlin: Springer.
Aubry, A., Maio, A. D., Farina, A., & Wicks, M. (2013). Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter. IEEE Transactions Aerospace Electronic Systems, 49(1), 93–117.
Bliss, D. W., & Forsythe, K. W. (2003). Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution. In Proceedings of 37th Asilomar conference on signals, system computer (Vol. 1, pp. 54–59), Pacific Grove, CA.
Chen, Ch. Y., & Vaidyanathan, P. P. (2008). Compressed sensing in MIMO radar. In 42nd Asilomar conference on signals, systems and computers (pp. 41–44).
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (1st ed.). New York: Wiley.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.
Donoho, D. L., & Huo, X. (2001). Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47(7), 2845–2862.
Du, X., & Cheng, L. (2015). Three stochastic measurement schemes for direction-of-arrival estimation using compressed sensing method. Multidimensional Systems and Signal Processing, 25(4), 621–636.
Elad, M. (2007). Optimized projections for compressed sensing. IEEE Transactions on Signal Processing, 55(12), 5695–5702.
Gini, F., & Rangaswamy, M. (2008). Knowledge based radar detection, tracking and classification. New York, NY: Wiley-Interscience.
Gureci, J. R. (2010). Cognitive radar: The knowledge-aided fully adaptive approach. Norwood, MA: Artech House.
Haimovich, A. M., Blum, R. S., & Cimini, L. J. (2008). MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 25(1), 116–129.
Hassanien, A., & Vorobyov, S. A. (2009). Transmit/receive beamforming for MIMO radar with colocated antennas. In 2009 IEEE international conference on acoustics, speech and signal processing (pp. 2089–2092).
Haykin, S. (2006). Cognitive radars. IEEE Signal Processing Magazine, 23(1), 30–40.
Hu, Q., Su, H., Zhou, Sh, Liu, Z., & Liu, J. (2016). Target detection in distributed MIMO radar with registration errors. IEEE Transactions on Aerospace and Electronic Systems, 52(1), 438–450.
Jabbarian-Jahromi, M., & Bizaki, H. K. (2014). Target tracking in MIMO radar systems using velocity vector. Journal of Information Systems and Telecommunication, 2, 150–158.
Jabbarian-Jahromi, M., & Kahaei, M. H. (2014a). Two-dimensional iterative adaptive approach for a sparse matrix solution. IET Electronics Letters, 50(1), 45–47.
Jabbarian-Jahromi, M., & Kahaei, M. H. (2014b). Two-dimensional sparse solution for bistatic MIMO radars in presence of jammers. In 22nd Iranian conference on electrical engineering (ICEE) (pp. 1755–1759). IEEE, Tehran.
Jabbarian-Jahromi, M., & Kahaei, M. H. (2015). Two-dimensional SLIM with application to pulse Doppler MIMO radars. EURASIP Journal on Advances in Signal Processing, 69(1), 1–12.
Jabbarian-Jahromi, M., & Kahaei, M. H. (2016). Complex two-dimensional TNIPM for \(l_1\) norm-based sparse optimization to collocated MIMO radar. IEEJ Transactions on Electrical and Electronic Engineering, 11(2), 228–235.
Jabbarian-Jahromi, M., Mohammadpour-Aghdam, K., Foudazi, G., & Mohammad-Salehi, M. (2014). DOA estimation based on sparse covariance vector representation using two-channel receiver. In 11th European radar conference (EuRAD).
Jabbarian-Jahromi, M., Shahbazi, N., Kahaei, M. H., & Abbasfar, A. (2016). Fast two-dimensional sparse Bayesian learning with application to pulse Doppler multiple-input multiple-output radars. IET Radar, Sonar & Navigation, 10(5), 966–975.
Kailath, T. (1967). The divergence and Bhattacharyya distance measures in signal selection. IEEE Transactions on Communication, 15(2), 52–60.
Karbasi, S. M., Aubry, A., Carotenuto, V., Naghsh, M. M., & Bastani, M. H. (2015). Knowledge-based design of space-time transmit code and receive filter for a multiple-input multiple-output radar in signal-dependent interference. IET Radar, Sonar and Navigation, 9, 1124–1135.
Knowles, J., & Corne, D. (1999). The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization. In Proceedings of the 1999 Congress on Evolutionary Computation (pp. 98–105). Piscataway, NJ: IEEE Press.
Kuo, Y., Wu, K., & Chen, J. (2017). A scheme for distributed compressed video sensing based on hypothesis set optimization techniques. Multidimensional Systems and Signal Processing, 28(1), 1–15.
Li, B., & Petropulu, A. P. (2015). Distributed MIMO radar based on sparse sensing: Analysis and efficient implementation. IEEE Transactions on Aerospace and Electronic Systems, 51(4), 3055–3070.
Li, H., Zhou, M., Guo, Q., Wu, R., & Xi, J. (2016). Compressive sensing-based wind speed estimation for low-altitude wind-shear with airborne phased array radar. Multidimensional Systems and Signal Processing. https://doi.org/10.1007/s11045-016-0448-6.
Liao, B., & Chan, Sh. (2015). Direction finding in MIMO radar with unknown transmitter and/or receiver gains and phases. Multidimensional Systems and Signal Processing, 28(2), 691–707.
MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281–297).
Naghsh, M. M., & Modarres-Hashemi, M. (2012). Exact theoretical performance analysis of optimum detector for statistical MIMO radars. IET Radar, Sonar and Navigation, 6, 99–111.
Niu, M., Salari, S., Kim, I., Chan, F., & Rajan, S. (2015). Recovery probability analysis for sparse signals via OMP. IEEE Transactions on Aerospace and Electronic Systems, 51(4), 3475–3479.
Rousseeuw, P. J. (1989). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.
Sen, S., Tang, G., & Nehorai, A. (2011). Multiobjective optimization of OFDM radar waveform for target detection. IEEE Transactions on Signal Processing, 59(2), 639–652.
Shahbazi, N., Abbasfar, A., & Jabbarian-Jahromi, M. (2017). Efficient two-dimensional compressive sensing in MIMO radar. EURASIP Journal on Advances in Signal Processing, 1(23), 1–15.
Stoica, P., He, H., & Li, J. (2009). New algorithms for designing unimodular sequences with good correlation properties. IEEE Transactions on Signal Processing, 57(4), 1415–1425.
Sun, C., Wang, B., Fang, Y., & Song, Z. (2017). Narrow-band radar imaging for off-grid spinning targets via compressed sensing. Multidimensional Systems and Signal Processing, 28(4), 1167–1181.
Taboada, H., & Coit, D. (2005). Post-Pareto optimality analysis to efficiently identify promising solutions for multi-objective problems. Rutgers University ISE Working Paper, 5-15.
Tan, X., Roberts, W., Li, J., & Stoica, P. (2011). Sparse learning via iterative minimization with application to MIMO radar imaging. IEEE Transactions on Signal Processing, 59(3), 1088–1101.
Tan, Z., Yang, P., & Nehorai, A. (2014). Joint sparse recovery method for compressed sensing with structured dictionary mismatches. IEEE Transactions on Signal Processing, 62(19), 4997–5008.
Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50(10), 2231–2242.
Yu, Y., Petropulu, A. P., & Poor, H. V. (2010). MIMO radar using compressive sampling. IEEE Journal of Selected Topics in Signal Processing, 4(1), 146–163.
Yu, Y., Petropulu, A. P., & Poor, H. V. (2011). Measurement matrix design for compressive sensing-based MIMO radar. IEEE Transactions on Signal Processing, 59(11), 5338–5352.
Yu, Y., Petropulu, A. P., & Poor, H. V. (2012). CSSF MIMO RADAR: Compressive-sensing and step-frequency based MIMO radar. IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1490–1504.
Yu, Y., Sun, Sh, Madan, R. N., & Petropulu, A. P. (2014). Power allocation and waveform design for the compressive sensing based MIMO radar. IEEE Transactions on Aerospace and Electronic Systems, 50(2), 898–909.
Zhu, W., & Chen, B. X. (2015). Novel methods of DOA estimation based on compressed sensing. Multidimensional Systems and Signal Processing, 26(1), 113–123.
Zhu, H., Leus, G., & Giannakis, G. B. (2011). Sparsity-cognizant total least-squares for perturbed compressive sampling. IEEE Transactions on Signal Processing, 59(5), 2002–2016.
Zibetti, M. V. W., & De Pierro, A. R. (2017). Improving compressive sensing in MRI with separate magnitude and phase priors. Multidimensional Systems and Signal Processing, 28(4), 1109–1131.
Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications. Doctoral dissertation ETH 13398, Swiss Federal Institute of Technology (ETH), Zurich.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shahbazi, N., Abbasfar, A. & Jabbarian-Jahromi, M. Measurement matrix design for CS-MIMO radar using multi-objective optimization. Multidim Syst Sign Process 29, 761–782 (2018). https://doi.org/10.1007/s11045-017-0542-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-017-0542-4