Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Image fusion based on complex-shearlet domain with guided filtering

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Combined the advantages of time-frequency separation of complex shearlet (CST) with the feature of guided filtering, a new image fusion algorithm based on CST domain and guided filtering is proposed. Firstly, CST is utilized for decomposition of the source images. Secondly, two scale guided filtering fusion rule is applied to the low frequency coefficients. Thirdly, larger sum-modified-Laplacian with guided filtering fusion rule is applied to the high frequency coefficients. Finally, the fused image is gained by the inverse CST. The algorithm can not only preserve the information of the source images well, but also improve the spatial continuity of fusion image. Experimental results show that the proposed method is superior to other current popular ones both in subjective visual and objective performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Cunha, A. L., Zhou, J. P., & Do, M. N. (2006). The nonsubsampled contourlet transform:Theory, design and application. IEEE Transactions on Image Processing, 15(10), 3089–3101.

    Article  Google Scholar 

  • Do, M. N., & Vetterli, M. (2005). The contourlet transform: An efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 14(12), 2091–2106.

    Article  Google Scholar 

  • Draper, N., & Smith, H. (1981). Applied regression analysis. New York: Wiley.

    MATH  Google Scholar 

  • Easley, G., Labate, D., & Lim, W. Q. (2008). Sparse directional image representation using the discrete shearlets transform. Applied and Computational Harmonic Analysis, 25(1), 25–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Eslami, R., & Radha, H. (2004). Wavelet based contourlet transform and it ’s application to image coding. In IEEE international conference on image processing, Singapore (pp. 3189–3192).

  • Farbman, Z., Fattal, R., Lischinski, D., & Szeliski, R. (2008). Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics, 27(3), 67:1–67:10.

    Article  Google Scholar 

  • Geng, P., Wang, Z., Zhang, Z., et al. (2012). Image fusion by pulse couple neural network with shearlet. Optical Engineering, 51(6), 067005-1–067005-7.

    Article  Google Scholar 

  • He, K. M., Sun, J., & Tang, X. O. (2013). Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1397–1409.

    Article  Google Scholar 

  • Jia, Y. H. (1998). Fusion of landsat TM and SAR images based on principal component analysis. Remote Sensing Technology and Application, 13(1), 46–49.

    Google Scholar 

  • Kingsbury, N. (1999). Image processing with complex wavelets. Philosophical Transactions: Mathematical Physical and Engineering Sciences, 357(1760), 2543–2560.

    Article  MATH  Google Scholar 

  • Kutyniok, G., Lemvig, J., & Lim, W. Q. (2011). Compactly supported shearlets are optimally sparse. Journal of Approximation Theory, 163(11), 1564–1589.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, S. T., Kang, X. D., & Hu, J. W. (2013). Image fusion with guided filtering. IEEE Transactions on Image Processing, 22(7), 2864–2875.

    Article  Google Scholar 

  • Lim, W. Q. (2010). The discrete shearlets transform: A new directional transform and compactly supported shearlets frames. IEEE Transactions on Image Processing, 19(5), 1166–1180.

    Article  MathSciNet  Google Scholar 

  • Liu, K., Guo, L., & Chen, J. S. (2011). Contourlet transform for image fusion using cycle spinning. Journal of Systems Engineering and Electronics, 22(2), 353–357.

    Article  Google Scholar 

  • Liu, S. Q., Hu, S. H., & Xiao, Y. (2013). SAR image de-noising based on complex shearlet transform domain gaussian mixture model. Acta Aeronautica et Astronautica Sinica, 34(1), 173–180. (in Chinese).

    Google Scholar 

  • Liu, S. Q., Hu, S. H., & Xiao, Y. (2014). Image separation using wavelet-complex shearlet dictionary. Journal of Systems Engineering and Electronics, 25(2), 314–321.

    Article  Google Scholar 

  • Liu, S. Q., Hu, S. H., Xiao, Y., et al. (2014). Bayesian Shearlet shrinkage for SAR image de-noising via sparse representation. Multidimensional Systems and Signal Processing, 25(4), 683–701.

    Article  Google Scholar 

  • Liu, S., Zhao, J., & Shi, M. Z. (2015). Medical image fusion based on rolling guidance filter and spiking cortical model. Computational and Mathematical Methods in Medicine, 2015, 1–9.

    MATH  Google Scholar 

  • Miao, Q. G., Shi, C., & Xu, P. F. (2011). A novel algorithm of image fusion using shearlets. Optics Communications, 284(6), 1540–1547.

    Article  Google Scholar 

  • Miao, Q. G., Shi, C., & Xu, P. F. (2011). Multi-focus image fusion algorithm based on shearlets. Chinese Optics Letters, 9(4), 041001.1–041001.5.

    Google Scholar 

  • Pajares, G., & Cruz, J. M. (2004). A wavelet-based image fusion tutorial. Pattern Recognition, 37(9), 1855–1872.

    Article  Google Scholar 

  • Qu, X. B., Yan, J. W., Xiao, H. Z., et al. (2008). Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain. Acta Automatica Sinica, 34(12), 1508–1514.

    Article  MATH  Google Scholar 

  • Qu, X. B., Yan, J. W., & Yang, G. D. (2009). Sum-modified-Laplacian-based multi-focus image fusion method in sharp frequency localized contourlet transform domain. Optics and Processing Engineering, 17(5), 1203–1212.

    Google Scholar 

  • Zhang, Q., & Guo, B. (2009). Multifocus image fusion using the nonsubsanpled contourlet transforms. Signal Processing, 89(7), 1334–1346.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuaiqi Liu.

Additional information

This work was supported in part by Natural Science Foundation of China under Grant No. 61401308, Natural Science Foundation of Hebei Province under Grant No. 2013210094, Natural Science Foundation of Hebei University under Grant No. 2014-303, Science and technology support project of Baoding City under Grant No. 15ZG016, Open laboratory project of Hebei University under Grant No. sy2015009 and sy2015057.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Shi, M., Zhu, Z. et al. Image fusion based on complex-shearlet domain with guided filtering. Multidim Syst Sign Process 28, 207–224 (2017). https://doi.org/10.1007/s11045-015-0343-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0343-6

Keywords

Navigation