Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A deterministic auto-regressive STAP approach for nonhomogenerous clutter suppression

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Direct data domain (DDD) space-time adaptive processing methods avoid nonhomogenerous training samples and can effectively suppress the clutter within the test range cell. However, it suffers inevitable performance loss due to the spatial and temporal smoothing process. Furthermore, the clutter suppression ability of these methods sharply degrades when applied to non-uniform and non-linear array for airborne radar. In this paper, a novel clutter suppression approach in the direct data domain is proposed, which describes clutter characteristic of the test range cell with AR model. For convenience, the novel method is referred to as \(\hbox {D}^{3}\hbox {AR}\). It utilizes the most system DOF. Hence, it suffers less aperture loss, compared to conventional DDD methods, e.g., the direct data domain least squares (\(\hbox {D}^{3}\hbox {LS}\)). More importantly, \(\hbox {D}^{3}\hbox {AR}\) can achieve much better clutter suupression prformance than \(\hbox {D}^{3}\hbox {LS}\) when applied to conformal array airborne radar because it does not need the spatial smoothing. The effectiveness of the \(\hbox {D}^{3}\hbox {AR}\) is verified by numerical examples for the case of a circular array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Befgin, J. S., Teixeira, C. M., Techau, P. M., et al. (2006). Improved clutter mitigation performance using knowledge-aided space-time adaptive processing. IEEE Transactions on Aerospace and Electronic Sytems, 42, 997–1009.

    Article  Google Scholar 

  • Carlson, B. D. (1988). Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Transactions on Aerospace and Electronic systems, 24, 397–401.

    Article  Google Scholar 

  • Gerlach, K. (1995). The effects of signal contamination on two adaptive detectors. IEEE Transactions on Aerospace and Electronic Systems, 30, 297–309.

    Article  Google Scholar 

  • Gerlach, K. R. (2002). Outlier resistant adaptive matched filtering. IEEE Transactions on Aerospace and Electronic Systems, 38, 885–901.

    Article  Google Scholar 

  • Gerlach, K., & Picciolo, M. L. (2003). Airborne/spacebased radar STAP using a structured covariance matrix. IEEE Transactions on Aerospace and Electronic Sytems, 39, 269–281.

    Article  Google Scholar 

  • Goodman, N. A., & Stiles, J. M. (2007). On clutter rank observed by arbitrary arrays. IEEE Transactions on Signal processing, 55, 178–186.

    Article  MathSciNet  Google Scholar 

  • Klemm, R. (2000). Comparison between monostatic and bistatic antenna configurations for STAP. IEEE Transactions on Aerospace and Electronic Systems, 36, 596–608.

    Article  Google Scholar 

  • Klemm, R. (2002). Principles of space-time adaptive processing. London: IEE Press.

    Google Scholar 

  • Lapierre, F., Droogenbroeck, M., & Verly, J. (2003). New solutions to the problem of range dependence in bistatic STAP radars. In Proceedings of the IEEE national radar conference, pp. 452–459.

  • Melvin, W., Himed, B., & Davis, M. (2003). Doubly adaptive bistatic clutter filtering. In Proceedings of the IEEE national radar conference, pp. 171–178.

  • Melvin, W., Wicks, M., Antonik, P., et al. (1998). Knowledge-based space-time adaptive processing for airborne early warning radar. IEEE Transactions on Aerospace and Electronic Sytems, 24, 37–42.

    Article  Google Scholar 

  • Melvin, W. L. (2000). Space-time adaptive radar performance in heterogeneous clutter. IEEE Transactions on Aerospace and Electronic Systems, 30, 621–633.

    Article  Google Scholar 

  • Parker, P., & Swindlehurst, A. (2003). Space-time autoregressive filtering for matched subspace STAP. IEEE Transactions on Aerospace and Electronic Sytems, 39, 510–520.

    Article  Google Scholar 

  • Rabideau, D. J., & Steinhardt, A. O. (1996). Improving the performance of adaptive arrays in non-stationary environments through data-adaptive training. In Proceedings of the Asilomar conference, pp. 75–79. Pacific Grove, CA.

  • Reed, I. S., Mallett, S. D., & Brennan, L. E. (1974). Rapid convergence rate in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 10, 853–863.

    Article  Google Scholar 

  • Roman, J. R., Rangaswamy, M., Davis, D. W., et al. (2000). Parametric adaptive matched filter for airborne radar applications. IEEE Transactions on Aerospace and Electronic Sytems, 36, 677–692.

    Article  Google Scholar 

  • Sarkar, T. K., Wang, H., Park, S., Koh, J., Adve, R., Kim, K., et al. (2001). A deterministic least squares approach to space time adaptive processing (STAP). IEEE Transactions on Antennas and Propagation, 49, 91–103.

    Article  MATH  Google Scholar 

  • Wang, Y. L., Peng, Y. N., & Bao, Z. (1997). Space-time adaptive processing for airborne radar with various array orientations. IET Radar, Sonar and Navigation, 144, 330–340.

    Article  Google Scholar 

  • Ward, J. (1994). Space-time adaptive processing for airborne radar. MIT Lincoln Laboratory Technical Report. ESC-TR-94-109, 13 December 1994.

  • Xie, W. C., & Wang, Y. L. (2009). STAP for airborne radar with cylindrical phased array antennas. Signal Processing, 89, 883–893.

    Article  MATH  Google Scholar 

  • Zatman, M. (2000). Circular array STAP. IEEE Transactions on Aerospace and Electronic Systems, 36, 510–517.

    Article  Google Scholar 

  • Zhao, L., Sun, J. P., & Xu, X. J. (2014). A hybrid STAP approach to target detection for heterogeneous scenarios in radar seekers. Multidimensional systems and signal processing, 25, 493–509.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Nature Science Foundation of China under Contract 61102169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqing Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, K., Xie, W., Wang, Y. et al. A deterministic auto-regressive STAP approach for nonhomogenerous clutter suppression. Multidim Syst Sign Process 27, 105–119 (2016). https://doi.org/10.1007/s11045-014-0292-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-014-0292-5

Keywords

Navigation