Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Image denoising by generalized total variation regularization and least squares fidelity

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Inspired by the ability of \(\ell _p\)-regularized algorithms and the close connection of total variation (TV) to the \(\ell _1\) norm, a \(p\)th-power type TV denoted as TV\(_p\) is proposed for \(0\le p \le 1\). The TV\(_p\)-regularized problem for image denoising is nonconvex thus difficult to tackle directly. Instead, we deal with the problem by proposing a weighted TV (WTV) minimization where the weights are updated iteratively to locally approximate the TV\(_p\)-regularized problem. The difficulty of WTV minimization is dealt with in a modified split Bregman framework. Numerical results are presented to demonstrate improved denoising performance of the new algorithm with \(p<1\) relative to that obtained by the standard TV minimization and several recent denoising methods from the literature on a variety of images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Allard, W. K. (2008). Total variation regularization for image denoising, ii. examples. SIAM Journal on Imaging Sciences, 1(4), 400–417.

    Article  MATH  MathSciNet  Google Scholar 

  • Allard, W. K. (2009). Total variation regularization for image denoising, iii. examples. SIAM Journal on Imaging Sciences, 2(2), 532–568.

    Article  MATH  MathSciNet  Google Scholar 

  • Beck, A., & Teboulle, M. (2009). Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. Image Processing, IEEE Transactions on, 18(11), 2419–2434.

    Article  MathSciNet  Google Scholar 

  • Candès, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  MATH  Google Scholar 

  • Candes, E., Wakin, M., & Boyd, S. (2008). Enhancing sparsity by reweighted \(\ell _1\) minimization. Journal of Fourier Analysis and Applications, 14(5), 877–905.

    Article  MATH  MathSciNet  Google Scholar 

  • Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1), 89–97.

    MathSciNet  Google Scholar 

  • Chan, T., Esedoglu, S., Park, F., & Yip, A. (2006). Total variation image restoration: Overview and recent developments. In N. Paragios, Y. Chen, & O. Faugeras (Eds.), Handbook of mathematical models in computer vision (pp. 17–31). New York: Springer.

  • Chan, T. F., & Esedoglu, S. (2005). Aspects of total variation regularized l1 function approximation. SIAM Journal on Applied Mathematics, 65(5), 1817–1837.

    Article  MATH  MathSciNet  Google Scholar 

  • Chartrand, R. (2007). Exact reconstruction of sparse signals via nonconvex minimization. Signal Processing Letters, IEEE, 14(10), 707–710.

    Article  Google Scholar 

  • Chartrand, R., & Yin, W. (2008). Iteratively reweighted algorithms for compressive sensing. In Acoustics, speech and signal processing, 2008. ICASSP 2008. IEEE international conference on, pp. 3869–3872. IEEE.

  • Chen, Q., Montesinos, P., Sun, Q. S., Heng, P. A., & Xia, D. S. (2010). Adaptive total variation denoising based on difference curvature. Image and Vision Computing, 28(3), 298–306.

    Article  Google Scholar 

  • Chen, S., Donoho, D., & Saunders, M. (2001). Atomic decomposition by basis pursuit. SIAM Review, 43(1), 129–159.

    Article  MATH  MathSciNet  Google Scholar 

  • Chopra, A., & Lian, H. (2010). Total variation, adaptive total variation and nonconvex smoothly clipped absolute deviation penalty for denoising blocky images. Pattern Recognition, 43(8), 2609–2619.

    Article  MATH  Google Scholar 

  • Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-d transform-domain collaborative filtering. Image Processing, IEEE Transactions on, 16(8), 2080–2095.

    Article  MathSciNet  Google Scholar 

  • Foucart, S., & Lai, M. (2009). Sparsest solutions of underdetermined linear systems via lq-minimization for \(0< q<1\). Applied and Computational Harmonic Analysis, 26(3), 395–407.

    Article  MATH  MathSciNet  Google Scholar 

  • Fu, H., Ng, M. K., Nikolova, M., & Barlow, J. L. (2006). Efficient minimization methods of mixed l2-l1 and l1-l1 norms for image restoration. SIAM Journal on Scientific computing, 27(6), 1881–1902.

    Article  MATH  MathSciNet  Google Scholar 

  • Goldstein, T., & Osher, S. (2009). The split bregman method for l1 regularized problems. SIAM Journal on Imaging Sciences, 2(2), 323–343.

    Article  MATH  MathSciNet  Google Scholar 

  • Grant, M., & Boyd, S. (2008). Graph implementations for nonsmooth convex programs. In V. Blondel, S. Boyd, & H. Kimura (Eds.), Recent advances in learning and control. Lecture Notes in Control and Information Sciences, Springer, pp. 95–110. http://stanford.edu/~boyd/graph_dcp.html.

  • Grant, M., & Boyd, S. (2012). CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx.

  • Hu, Y., & Jacob, M. (2012). Higher degree total variation (hdtv) regularization for image recovery. Image Processing, IEEE Transactions on, 21(5), 2559–2571.

    Article  MathSciNet  Google Scholar 

  • Jaya Manmadha Rao, M., Anuradha, S., & Reddy, K. (2010). Impulse noise removal in digital images. International Journal of Computer Applications, 10(8), 39–42.

    Google Scholar 

  • Larson, R. (2013). Elementary linear algebra (7th ed.). Belmont: Brooks/Cole, Cengage Learning.

    Google Scholar 

  • Lee, Y. J., Lee, S., & Yoon, J. (2013). A framework for moving least squares method with total variation minimizing regularization. Journal of Mathematical Imaging and Vision. doi:10.1007/s10851-013-0428-5.

  • Louchet, C., & Moisan, L. (2011). Total variation as a local filter. SIAM Journal on Imaging Sciences, 4(2), 651–694.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallat, S. (2009). A wavelet tour of signal processing: The sparse way (3rd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Nikolova, M. (2002). Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM Journal on Numerical Analysis, 40(3), 965–994.

    Article  MATH  MathSciNet  Google Scholar 

  • Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1–4), 259–268.

    Article  MATH  Google Scholar 

  • Wang, Y., Yang, J., Yin, W., & Zhang, Y. (2008). A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences, 1(3), 248–272.

    Article  MATH  MathSciNet  Google Scholar 

  • Wohlberg, B., & Rodriguez, P. (2007). An iteratively reweighted norm algorithm for minimization of total variation functionals. Signal Processing Letters, IEEE, 14(12), 948–951.

    Article  Google Scholar 

  • Yan, J., & Lu, W.-S. (2011). New algorithms for sparse representation of discrete signals based on \(\ell _p\)-\(\ell _2\) optimization. In Proc. IEEE PacRim Conf., 2011, pp. 73–78.

  • Yan, J., & Lu, W.-S. (2011). Power-iterative strategy for \(\ell _p\)-\(\ell _2\) optimization for compressive sensing: Towards global solution. In Proc. IEEE Asilomar Conf., 2011, pp. 1153–1157.

  • Yan, J., & Lu, W.-S. (2012). Smoothed \(\ell _p\)-\(\ell _2\) solvers for signal denoising. In Proc. IEEE ICASSP Conf., 2012, pp. 3801–3804.

  • Zibulevsky, M., & Elad, M. (2010). L1-L2 optimization in signal and image processing. Signal Processing Magazine, IEEE, 27(3), 76–88.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J., Lu, WS. Image denoising by generalized total variation regularization and least squares fidelity. Multidim Syst Sign Process 26, 243–266 (2015). https://doi.org/10.1007/s11045-013-0255-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-013-0255-2

Keywords

Navigation