Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Spectroscopic exploring the affinities, characteristics, and mode of binding interaction of curcumin with DNA

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Curcumin is a polyphenolic bioactive compound found in the spice turmeric endowed with diverse pharmacological and biological activities. In this study, fluorescence spectroscopy in combination with UV–Vis absorbance spectroscopy was employed to investigate the high affinity binding of curcumin to herring sperm DNA (hs-DNA). From the series of studies undertaken in the present program, for example, steady-state emission; absorption; the effect of denaturants; competition experiment; and anion (iodide) ion-induced fluorescence quenching; the mode of binding of curcumin into the DNA helix has been substantiated to be principally intercalative. Binding parameters calculating from Stern–Volmer method and Scatchard method showed that curcumin bind to hs-DNA with the binding affinities of the order 10L mol−1. The effects of ionic strength, chemical denaturants, thermal denaturation and pH were studied to show the factors of the interaction, and provided further support for the intercalative binding mode. In addition, the methods and techniques used in the present work can also be exploited to study the interaction of curcumin with other biological, biomimicking assemblies and drug delivery vehicles, and so forth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu HL, Huang QR (2012) Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem 60:5373–5379

    Article  PubMed  CAS  Google Scholar 

  2. Barry J, Fritz M, Brender JR, Smith PES, Lee DK (2009) Determining the effects of lipophilic drugs on membrane structure by solid-state NMR spectroscopy: the case of the antioxidant curcumin. J Am Chem Soc 131:4490–4498

    Article  PubMed  CAS  Google Scholar 

  3. Zhao LN, Chiu SW, Benoit J, Chew LY, Mu YG (2011) The effect of curcumin on the stability of Aβ dimers. J Phys Chem B 115:12247–12256

    Article  PubMed  CAS  Google Scholar 

  4. Pizzo P, Scapin C, Vitadello M, Florean C, Gorza L (2010) Grp94 acts as a mediator of curcumin-induced antioxidant defence in myogenic cells. J Cell Mol Med 14:970–981

    Article  PubMed  CAS  Google Scholar 

  5. Bar-Sela G, Epelbaum R, Schaffer M (2010) Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem 17:190–197

    Article  PubMed  CAS  Google Scholar 

  6. Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, Aggarwal BB (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 28:1937–1955

    Article  PubMed  CAS  Google Scholar 

  7. Nafisi S, Adelzadeh M, Norouzi Z, Sarbolouki MN (2009) Curcumin binding to DNA and RNA. DNA Cell Biol 28:201–208

    Article  PubMed  CAS  Google Scholar 

  8. Kurien BT, Dillon SP, Dorri Y, D’Souza A, Scofield RH (2011) Curcumin does not bind or intercalate into DNA and a note on the gray side of curcumin. Int J Cancer 128:242–245

    Article  PubMed  CAS  Google Scholar 

  9. Subhan MA, Islam MM, Chowdhury MRU (2012) Binding studies and effect of light on the conductance of intercalated curcumin into DNA. J Sci Res 4:411–418

    Article  CAS  Google Scholar 

  10. Paul BK, Guchhait N (2011) Exploring the strength, mode, dynamics, and kinetics of binding interaction of a cationic biological photosensitizer with DNA: implication on dissociation of the drug–DNA complex via detergent sequestration. J Phys Chem B 115:11938–11949

    Article  PubMed  CAS  Google Scholar 

  11. Manna A, Chakravorti S (2012) Modification of a styryl dye binding mode with calf thymus DNA in vesicular medium: from minor groove to intercalative. J Phys Chem B 116:5226–5233

    Article  PubMed  CAS  Google Scholar 

  12. Pheeney CG, Barton JK (2012) DNA electrochemistry with tethered methylene blue. Langmuir 28:7063–7070

    Article  PubMed  CAS  Google Scholar 

  13. Sarkar D, Das P, Basak S, Chattopadhyay N (2008) Binding interaction of cationic phenazinium dyes with calf thymus DNA: a comparative study. J Phys Chem B 112:9243–9249

    Article  PubMed  CAS  Google Scholar 

  14. Ray S, Grove A (2012) Interaction of saccharomyces cerevisiae HMO2 domains with distorted DNA. Biochemistry 51:1825–1835

    Article  PubMed  CAS  Google Scholar 

  15. Vargiu AV, Magistrato A (2012) Detecting DNA mismatches with metallo-insertors: a molecular simulation study. Inorg Chem 51:2046–2057

    Article  PubMed  CAS  Google Scholar 

  16. Bhadra K, Kumar GS (2011) Interaction of berberine, palmatine, coralyne, and sanguinarine to quadruplex DNA: a comparative spectroscopic and calorimetric study. Biochim Biophys Acta 1810:485–496

    Article  PubMed  CAS  Google Scholar 

  17. N’soukpoé-Kossi CN, Ouameur AA, Thomas T, Shirahata A, Thomas TJ, Tajmir-Riahi HA (2008) DNA interaction with antitumor polyamine analogues: a comparison with biogenic polyamines. Biomacromolecules 9:2712–2718

    Article  PubMed  Google Scholar 

  18. Campbell NH, Smith DL, Reszka AP, Neidle S, Hagan DO (2011) Fluorine in medicinal chemistry: β-fluorination of peripheral pyrrolidines attached to acridine ligands affects their interactions with G-quadruplex DNA. Org Biomol Chem 9:1328–1331

    Article  PubMed  CAS  Google Scholar 

  19. Gu TT, Hasebe Y (2012) Novel amperometric assay for drug-DNA interaction based on an inhibitory effect on an electrocatalytic activity of DNA-Cu(II) complex. Biosens Bioelectron 33:222–227

    Article  PubMed  CAS  Google Scholar 

  20. Samanta A, Paul BK, Guchhait N (2012) Photophysics of DNA staining dye propidium iodide encapsulated in bio-mimetic micelle and genomic fish sperm DNA. J Photochem Photobiol B 109:58–67

    Article  PubMed  CAS  Google Scholar 

  21. Froehlich E, Mandeville JS, Weinert CM, Kreplak L, Tajmir-Riahi HA (2011) Bundling and aggregation of DNA by cationic dendrimers. Biomacromolecules 12:511–517

    Article  PubMed  CAS  Google Scholar 

  22. Liang MM, Liu XR, Liu GZ, Dou SP, Cheng DF, Liu YX, Rusckowski M, Hnatowich DJ (2011) Reducing the background fluorescence in mice receiving fluorophore/inhibitor DNA duplexes. Mol Pharm 8:126–132

    Article  PubMed  CAS  Google Scholar 

  23. Tong CL, Xiang GH, Bai Y (2010) Interaction of paraquat with calf thymus DNA: a terbium(III) luminescent probe and multispectral study. J Agric Food Chem 58:5257–5262

    Article  PubMed  CAS  Google Scholar 

  24. Zhang GW, Hu X, Fu P (2012) Spectroscopic studies on the interaction between carbaryl and calf thymus DNA with the use of ethidium bromide as a fluorescence probe. J Photochem Photobiol B 108:53–61

    Article  PubMed  CAS  Google Scholar 

  25. Ilanchelian M, Ramaraj R (2011) Binding interactions of toluidine blue O with Escherichia coli DNA: formation of bridged structure. J Fluoresc 21:1439–1453

    Article  PubMed  CAS  Google Scholar 

  26. Chandirasekar S, Dharanivasan G, Kasthuri J, Kathiravan K, Rajendiran N (2011) Facile synthesis of bile salt encapsulated gold nanoparticles and its use in colorimetric detection of DNA. J Phys Chem C 115:15266–15273

    Article  CAS  Google Scholar 

  27. Mussardo P, Corda E, González-Ruiz V, Rajesh J, Girotti S, Martín MA, Olives AI (2011) Study of non-covalent interactions of luotonin a derivatives and the DNA minor groove as a first step in the study of their analytical potential as DNA probes. Anal Bioanal Chem 400:321–327

    Article  PubMed  CAS  Google Scholar 

  28. Pu F, Huang ZZ, Ren JS, Qu XG (2010) DNA/ligand/ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range. Anal Chem 82:8211–8216

    Article  PubMed  CAS  Google Scholar 

  29. Sahoo D, Bhattacharya P, Chakravorti S (2010) Quest for mode of binding of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide with calf thymus DNA. J Phys Chem B 114:2044–2050

    Article  PubMed  CAS  Google Scholar 

  30. Hegde AH, Prashanth SN, Seetharamappa J (2012) Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods. J Pharm Biomed Anal 63:40–46

    Article  PubMed  CAS  Google Scholar 

  31. Zhang GW, Fu P, Wang L, Hu MM (2011) Molecular spectroscopic studies of farrerol interaction with calf thymus DNA. J Agric Food Chem 59:8944–8952

    Article  PubMed  CAS  Google Scholar 

  32. Shi Y, Guo CL, Sun YJ, Liu ZL, Xu FG, Zhang Y, Wen ZW, Li Z (2011) Interaction between DNA and microcystin-LR studied by spectra analysis and atomic force microscopy. Biomacromolecules 12:797–803

    Article  PubMed  CAS  Google Scholar 

  33. Grueso E, López-Pérez G, Castellano M, Prado-Gotor R (2012) Thermodynamic and structural study of phenanthroline derivative ruthenium complex/DNA interactions: probing partial intercalation and binding properties. J Inorg Biochem 106:1–9

    Article  PubMed  CAS  Google Scholar 

  34. Kashaniana S, Khodaei MM, Roshanfekrb H, Shahabadi N, Mansouri G (2012) DNA binding, DNA cleavage and cytotoxicity studies of a new water soluble copper(II) complex: the effect of ligand shape on the mode of binding. Spectrochim Acta A 86:351–359

    Article  Google Scholar 

  35. Zhang Y, Zhong QX (2012) Binding between bixin and whey protein at pH 7.4 studied by spectroscopy and isothermal titration calorimetry. J Agric Food Chem 60:1880–1886

    Article  PubMed  CAS  Google Scholar 

  36. Zhang Y, Qi ZD, Liu XR, Jiang FL, Liu Y (2012) Conformation and thermodynamic properties of the binding of vitamin C to human serum albumin. J Solut Chem 41:351–366

    Article  CAS  Google Scholar 

  37. Liu HK, Sadler PJ (2011) Metal complexes as DNA intercalators. Acc Chem Res 44:349–359

    Article  PubMed  CAS  Google Scholar 

  38. Wang AHJ, Quigley GJ, Rich A (1979) Atomic resolution analysis of a 2:1 complex of CpG and acridine orange. Nucleic Acids Res 6:3879–3890

    Article  PubMed  CAS  Google Scholar 

  39. Li XL, Hu YJ, Wang H, Yu BQ, Yue HL (2012) Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules 13:873–880

    Article  PubMed  CAS  Google Scholar 

  40. Carvalhoa FAO, Santiagoa PS, Tabak M (2012) On the stability of the extracellular hemoglobin of Glossoscolex paulistus, in two iron oxidation states, in the presence of urea. Arch Biochem Biophys 519:46–58

    Article  Google Scholar 

  41. Ou-Yang Y, Li XL, Wang H, Fang M, Hu YJ (2012) Determination of the specific interaction between palmatine and bovine serum albumin. Mol Biol Rep 39:5495–5501

    Article  PubMed  Google Scholar 

  42. Chakrabarty A, Mallick A, Haldar B, Das P, Chattopadhyay N (2007) Binding interaction of a biological photosensitizer with serum albumins: a biophysical study. Biomacromolecules 8:920–927

    Article  PubMed  CAS  Google Scholar 

  43. Wildes A, Theodorakopoulos N, Valle-Orero J, Cuesta-López S, Garden JL, Peyrard M (2011) The thermal denaturation of DNA studied with neutron scattering. Phys Rev Lett 106:1–4

    Article  Google Scholar 

  44. Zhang Y, Jiang FL, Li JH, Liu XR, Liu Y (2011) Biophysical studies on the interactions of a classic mitochondrial uncoupler with bovine serum albumin by spectroscopic, isothermal titration calorimetric and molecular modeling methods. J Fluoresc 21:475–485

    Article  PubMed  CAS  Google Scholar 

  45. Wang YC, Lin CB, Su JJ, Ru YM, Wu Q, Chen ZB, Mao BW, Tian ZW (2011) Electrochemically-driven large amplitude pH cycling for acid–base driven DNA denaturation and renaturation. Anal Chem 83:4930–4935

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21273065, 20803019), the Research Foundation of Education Bureau of Hubei Province, China (Nos. Q20122205, B20122202), and the National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201210513015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Jun Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XL., Hu, YJ., Mi, R. et al. Spectroscopic exploring the affinities, characteristics, and mode of binding interaction of curcumin with DNA. Mol Biol Rep 40, 4405–4413 (2013). https://doi.org/10.1007/s11033-013-2530-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2530-6

Keywords

Navigation