Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Outage Probability Analysis for Energy Harvesting Cooperative Relays in a Clustered Environment

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

This paper presents the outage probability analysis of the energy harvesting (EH) decode and forward (DF) cooperative relay network when more than one relays are available to assist the communication between source and destination in the presence of the direct connection. The relays use power splitting (PS) protocol with adaptive PS ratio for EH. As wireless EH can be more beneficial over smaller distances therefore a clustered environment is considered in which the source, destination and relays are located in a small area. First, we analyze the performance of selection cooperation (SC) which requires channel state information (CSI) at the source. High signal to noise ratio approximation of the outage probability is provided for this case. Secondly, we present the performance of all relays cooperation (ARC) scheme which requires no CSI at the source. Lower and upper bounds of the outage probability are presented for smaller number of relays in ARC scheme whereas high signal to noise ratio approximation is provided for higher number of relays. Simulation results validate the analytical results and show that SC scheme outperforms ARC scheme at the expense of CSI requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mepedally B, Mehta NB (2010) Voluntary energy harvesting relays and selection in cooperative wireless networks. IEEE Trans Wirel Commun 9(11):3543–3553

    Article  Google Scholar 

  2. Krikidis I (2015) Relay selection in wireless powered cooperative networks with energy storage. IEEE J Sel Areas Commun 33(12):2596–2610

    Article  Google Scholar 

  3. Nasir AA, Zhou X, Durrani S, Kennedy RA (2013) Relaying protocols for wireless energy harvesting and information processing. IEEE Trans Wirel Commun 12(7):3622–3636

    Article  Google Scholar 

  4. Ding Z, Perlaza S, Esnaola I, Poor HV (2014) Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans Wirel Commun 13(2):846–860

    Article  Google Scholar 

  5. Ding H, da Costa D, Suraweera H, Ge J (2016) Role selection cooperative systems with energy harvesting relays. IEEE Trans Wirel Commun 15(6):4218–4233

  6. Varan B, Yener A (2015) Incentivizing signal and energy cooperation in wireless networks. IEEE J Sel Areas Commun 33(12):2524–2566

    Article  Google Scholar 

  7. Wang Z, Chen Z, Xia B, Luo L, Zhou J (2016) Cognitive relay networks with energy harvesting and information transfer: design, analysis and optimization. IEEE Trans Wirel Commun 15(4):2562–2576

    Article  Google Scholar 

  8. Bae YH, Baek JW (2016) Achievable throughput analysis of opportunistic spectrum access in cognitive radio networks with energy harvesting. IEEE Trans Commun 64(4):1399–1410

    Article  Google Scholar 

  9. Wu T-Q, Yang H-C (2015) On the performance of overlaid wireless sensor transmission with RF energy harvesting. IEEE J Sel Areas Commun 33(8):1693–1705

    MathSciNet  Google Scholar 

  10. Liu W, Zhou X, Durrani S, Mehrpouyan H, Blostein D (2016) Energy harvesting wireless sensor networks: Delay analysis considering energy costs of sensing and transmission. IEEE Trans Wirel Commun 15(7):4635–4650

  11. Mekikis P-V, Antonopoulos A, Kartsakli E, Lalos A. S., Verikoukis C (2016) Information exchange in randomly deployed dense WSNs with wireless energy harvesting capabilities. IEEE Trans Wirel Commun 15(4):3008–3018

    Article  Google Scholar 

  12. Li T, Fan P, Letaief KB (2016) Outage probability of energy harvesting relay-aided cooperative networks over rayleigh fading channel. IEEE Trans Veh Technol 65(2):972–978

    Article  Google Scholar 

  13. Son PN, Kong HY (2015) Exact outage analysis of energy harvesting underlay cooperative cognitive networks. IEICE Trans Commun E98-B(4):661–672

    Article  Google Scholar 

  14. Do NT, Bao VNQ, An B (2016) Outage performance analysis of relay selection schemes in wireless energy harvesting cooperative networks over non-identical rayleigh fading channels. Sensors, MDPI:1–19

  15. Lee Y-H, Liu K-H (2015) Battery-aware relay selection for energy harvesting cooperative networks. In: IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), 2015, Hong Kong, pp 1786–1791

  16. Liu KH (2014) Selection cooperation using RF energy harvesting relays with finite energy buffer. In: 2014 IEEE wireless communications and networking conference. WCNC, Istanbul, pp 2156–2161

  17. Liu KH (2016) Performance analysis of relay selection for cooperative relays based on wireless power transfer with finite energy storage. IEEE Trans Veh Tech 65(7):5110–5121

    Article  Google Scholar 

  18. Michalopoulos DS, Suraweera HA, Schober R (2015) Relay selection for simultaneous information transmission and wireless energy transfer: a tradeoff perspective. IEEE J Sel Areas Commun 33(8):1578–1594

    Google Scholar 

  19. Ding Z, Krikidis I, Sharif B, Poor HV (2014) Wireless information and power transfer in cooperative networks with spatially random relays. IEEE Trans Wireless Commun 13(8):4440–4453

    Article  Google Scholar 

  20. Luo Y, Zhang J, Letaief KB (2013) Relay selection for energy harvesting cooperative communication systems. In: 2013 IEEE global communications conference (GLOBECOM), Atlanta, GA, pp 2514–2519

  21. Xiao Y, Han Z, DaSilva LA (2014) Opportunistic relay selection for cooperative energy harvesting communication networks. In: 2014 IEEE global communications conference, Austin, TX, pp 4371–4376

  22. Krikidis I, Thompson JS, Mclaughlin S, Goertz N (2009) Max-min relay selection for legacy amplify-and-forward systems with interference. IEEE Trans Wirel Commun 8(6):3016– 3027

    Article  Google Scholar 

  23. Uysal M (2009) Cooperative Communications for Improved Wireless Network Transmission: Frameworks for Virtual Antenna Array Applications. IGI-Global

  24. Beaulieu NC, Hu J (2006) A closed-form expression for the outage probability of decode-and-forward relaying in dissimilar rayleigh fading channels. IEEE Commun Lett 10(12):813–815

    Article  Google Scholar 

  25. Ikki SS, Ahmed MH (2011) Performance analysis of cooperative diversity with incremental-best-relay technique over rayleigh fading channels. IEEE Trans Commun 59(8):2152–2161

    Article  Google Scholar 

  26. Gradshteyn IS, Ryzhik IM (2000) Table of integrals, series and products, 6th edn. Academic Press

  27. Ng EW, Geller M (1969) A table of integrals of the error functions. J Res National Bureau of Standards-B Mathematical Sciences 73B(1):1–20

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by Institute for Information and Communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (B0126-16-1051) and National Research Foundation (NRF) Korea under grant number NRF-2015R1D1A1A09059026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Geun Lee.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Appendix

Appendix

Proof of Lemma 1

We know the cdf of individual g i ’s and since they are independent therefore we can write the outage probability for SC scheme as

$$\begin{array}{@{}rcl@{}} &&{{\int}_{0}^{C}}\left[1-2\sqrt{\frac{\lambda^{2}(C-|h_{s_{n}d}|^{2})}{\eta}}e^{-\lambda(C-|h_{s_{n}d}|^{2})}\right.\\ &&\qquad\left.\times K_{1}\left( 2\sqrt{\frac{\lambda^{2}(C-|h_{s_{n}d}|^{2})}{\eta}}\right)\right]^{M}\\ &&\times\lambda e^{-\lambda|h_{s_{n}d}|^{2}}d|h_{s_{n}d}|^{2}. \end{array} $$
(36)

After some mathematical manipulations, the above integral can be written as

$$\begin{array}{@{}rcl@{}} P_{out}&=&e^{-\lambda C}{{\int}_{0}^{C}} \left[1-e^{-\lambda x}2\sqrt{\frac{\lambda^{2}x}{\eta}}K_{1}\left( 2\sqrt{\frac{\lambda^{2}x}{\eta}}\right)\right]^{M}\\ &&\times\lambda e^{\lambda x}dx. \end{array} $$
(37)

For high SNR, we use following approximations

$$\begin{array}{@{}rcl@{}} xK_{1}(x)\simeq1+\frac{x^{2}}{2}\ln{\frac{x}{2}} \end{array} $$
(38)
$$\begin{array}{@{}rcl@{}} e^{kx}\simeq1+kx \end{array} $$
(39)
$$\begin{array}{@{}rcl@{}} (1+x)^{k}\simeq 1+kx \end{array} $$
(40)

Hence Eq. 37 can be simplified to

$$\begin{array}{@{}rcl@{}} P_{out}^{SC}&\simeq& \lambda^{M+1}e^{-\lambda C}{{\int}_{0}^{C}} x^{M}\left[1+\frac{\lambda}{\eta}(1-\lambda x)\ln{\left( \frac{\eta}{x \lambda^{2}}\right)}\right]^{M}\\ &&\times (1+\lambda x) dx, \end{array} $$
(41)

we can use binomial expansion to get

$$\begin{array}{@{}rcl@{}} P_{out}^{SC}&\simeq& \lambda^{M+1}e^{-\lambda C}{\sum}_{p=0}^{M} \binom{M}{p}{{\int}_{0}^{C}}\left( \frac{\lambda}{\eta}\right)^{M-p}\\ &&\times\left( 1-\left( M-p\right)\left( \lambda x\right)\right)x^{M}\ln^{M-p}\\ &&\times{\left( \frac{\eta}{x \lambda^{2}}\right)}\left( 1+\lambda x\right)dx, \end{array} $$
(42)

the result of the inner integration can be written as

$$\begin{array}{@{}rcl@{}} (\frac{\lambda}{\eta})^{M-p}\!\left[A\Theta(M,\!p,\!1)\,-\,\!B\Theta(M,\!p,\!2)\,-\,\!D\Theta(M,\!p,\!3)\right]. \end{array} $$
(43)

By putting Eq. 43 into Eq. 42 Lemma 2 is proved.

Proof of Lemma 2

The pdf of g can be found using Eq. 18

$$\begin{array}{@{}rcl@{}} p_{g}(x)\!\!&=&\!\!\frac{\partial Pr(g<x)}{\partial x}\\ \!\!&=&\!\!e^{-\lambda x}\left[\lambda K_{1}\left( \sqrt{\frac{4\lambda^{2} x}{\eta}}\right)\sqrt{\frac{4 \lambda^{2} x}{\eta}}\,-\,\sqrt{\frac{\lambda^{2}}{\eta x}}K_{1}\left( \sqrt{\frac{4\lambda^{2} x}{\eta}}\right)\right.\\ &&\quad\quad\quad\left.+\! K_{0}\left( \sqrt{\frac{4\lambda^{2} x}{\eta}}\right)\frac{\lambda^{2}}{\eta}\,+\,K_{2}\left( \sqrt{\frac{4\lambda^{2} x}{\eta}}\right)\frac{\lambda^{2}}{\eta}\right], \end{array} $$
(44)

and \(\overline {g}\) and \({\sigma _{g}^{2}}\) are given by

$$\begin{array}{@{}rcl@{}} \overline{g}={\int}_{0}^{\infty} xp_{g}(x) dx, \end{array} $$
(45)
$$\begin{array}{@{}rcl@{}} {\sigma_{g}^{2}}={\int}_{0}^{\infty} x^{2} p_{g}(x) dx -\overline{g}^{2}, \end{array} $$
(46)

Now we can use following identity from [26]

$$\begin{array}{@{}rcl@{}} &&{\int}_{0}^{\infty} x^{\mu-\frac{1}{2}}e^{-\gamma x}K_{2\nu}(2\beta \sqrt{x})dx\\&=&\frac{\Gamma(\mu\,+\,\nu\,+\,\frac{1}{2}) \Gamma(\mu\,-\,\nu\,+\,\frac{1}{2})}{2\beta}e^{\frac{\beta^{2}}{2\gamma}}\gamma^{\,-\,\mu}W_{\,-\,\mu,\nu} \left( \frac{\beta^{2}}{\gamma}\right), \end{array} $$
(47)

where W α,β (x) is the Whittaker function. Putting Eq. 44 into Eqs. 4546 and using Eq. 47 we can get Eqs. 34 and 35. Now we can write the right hand side of Eq. 27 as follows

$$\begin{array}{@{}rcl@{}} P_{out}^{ARC}&\simeq&{\int}_{0}^{C_{1}} \frac{1}{2}\left[1+erf\left( \frac{C_{1}-|h_{s_{n}d}|^{2}-\omega}{\sigma\sqrt{2}}\right)\right]\\ &&\times\lambda e^{-\lambda |h_{s_{n}d}|^{2}} d|h_{s_{n}d}|^{2}. \end{array} $$
(48)

After simplification [27] we can get Eq. 33. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M., Jang, J.W. & Lee, KG. Outage Probability Analysis for Energy Harvesting Cooperative Relays in a Clustered Environment. Mobile Netw Appl 23, 1208–1219 (2018). https://doi.org/10.1007/s11036-017-0813-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0813-1

Keywords

Navigation