Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

RoBiN: Random Access using Border Routers in Cellular Networks

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Introducing Machine-to-Machine (M2M) communications over traditional 4G cellular networks make the cellular random access channel more congested and collision-prone. In order to resolve this random access congestion, we propose RoBiN - Random access using Border router in M2M cellular Networks. RoBiN proposes an architectural modification of introducing small cells, called Border Routers (BR), in cellular networks, with complete frequency reuse capability. We formulate the aforementioned challenge in terms of collision probability and system capacity. Subsequently, we propose an efficient solution for M2M communications in cellular networks. Exhaustive mathematical analysis shows that RoBiN significantly improves the random access success probability, by 50 % over existing 4G cellular systems. Simulation results on typical 4G networks corroborate our mathematical analysis and demonstrate almost 15 dB increase in Signal-to-Interference-plus-Noise Ratio (SINR) and 3 times throughput improvements over legacy 4G cellular systems. Furthermore, RoBiN also achieves 50 %−80 % improvement in collision probability over existing time alignment matching work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wu G, Talwar S, Johnsson K, Himayat N, Johnson K D (2011) Intel & P. popovski, M2M: From mobile to embedded internet. IEEE Commun Mag 49(4):36–43

    Article  Google Scholar 

  2. Ericsson (2011) More than 50 billion connected devices, white paper, available online: goo.gl/vjYO0 or http://goo.gl/nRdzLg

  3. Cisco (2011) The Internet of Things, How the Next Evolution of the Internet Is Changing Everything, white paper, Available online: http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

  4. Laya A, Alonso L, Alonso-Zarate J (2014) Is the Random Access Channel of LTE and LTE-a Suitable for M2M Comm. A Survey of Alternatives. IEEE Commun Surv Tutorials 16(1):4–16

    Article  Google Scholar 

  5. Saquib N, Hossain E, Kim D I (2013) Fractional frequency reuse for interference management in LTE-advanced hetnets. IEEE Wirel Commun 20(2):113–122

    Article  Google Scholar 

  6. Wang L-C, Yeh C-J (2011) 3-Cell network MIMO architectures with sectorization and fractional frequency reuse. IEEE J Sel Areas Commun 29(6):1185–1199

    Article  Google Scholar 

  7. Innovations Telesystem (2010) LTE In a nutshell. white paper

  8. 3GPP TS 36.101, TS 36.101 V8.15.0 Evolved Universal Terrestrial Radio Access (E-UTRA): User Equipment (UE) radio transmission and reception

  9. (2012) 3GPP TS 136 211 V10.4.0 2012 Evolved Universal Terrestrial Radio Access (E-UTRA):Physical channels and modulation pp.46–47

  10. 3GPP TR 23.888 V1.2.0, System improvement for machine-type Comm. Available: http://www.3gpp.org/ftp/Specs/archive/23_series/23.888/23888-120.zip

  11. 3GPP TS 22.368 V11.1.0, Service requirements for machine-type Comm. Available: http://www.3gpp.org/ftp/Specs/archive/22_series/22.368/22368-b10.zip

  12. Boccardi F, Heath R W, Lozano A, Marzetta T L, Popovski P (2014) Fivedisruptive technology directions for 5G. IEEE Commun Mag 52(2):74–80

    Article  Google Scholar 

  13. Pang Y-C, Chao S-L, Lin G-Y, Wei H-Y (2014) Network access for M2M/H2H hybrid systems: a game theoretic approach. IEEE Commun Lett 18(5):845–848

    Article  Google Scholar 

  14. Wu H, Zhu C, La R J, Liu X, Zhang Y (2013) FASA: Accelerated s-ALOHA using access history for Event-Driven M2M communications. IEEE/ACM Trans Networking 21(6):1904–1917

    Article  Google Scholar 

  15. Kan Z, Ou S, Alonso-Zarate J, Dohler M, Liu F, Zhu H (2014) Challenges of massive access in highly dense LTE-advanced networks with machine-to-machine communications. IEEE Wirel Commun 21(3):12–18

    Article  Google Scholar 

  16. Lin T-M, Lee C-H, Cheng J-P, Chen W-T (2014) PRADA: Prioritized random access with dynamic access barring for MTC in 3GPP LTE-a networks. IEEE Trans Veh Technol 63(5):2467– 2472

    Article  Google Scholar 

  17. Osti P, Lassila P, Aalto S, Larmo A, Tirronen T (2014) Analysis of PDCCH performance for M2M traffic in LTE. IEEE Trans Veh Technol 63(9):4357–4371

    Article  Google Scholar 

  18. Jang H, Kim S, Ko K, Cha Jiyoung, Sung D (2014) Spatial group based random access for M2M communications. IEEE Commun Lett 18(6):961–964

    Article  Google Scholar 

  19. Shao-Yu L L, Liau T-H, Kao C-Y, Chen K-C (2012) Cooperative Access Class Barring for Machine-to-Machine Communications. IEEE Trans Wirel Commun 11(1):27–32

    Article  Google Scholar 

  20. Monowar H, Hossain E, Niyato D (2013) Random access for M2M communications in LTE-advanced networks: issues and approaches. IEEE Commun Mag 51(6):86–93

    Article  Google Scholar 

  21. Ko K S, Kim M J, Bae K Y, Sung D K, Kim J H, Ahn J Y (2012) A Novel Random Access for Fixed-Location Machine-to-Machine Communications in OFDMA Based Systems. IEEE Commun Lett 16(9):1428–1431

    Article  Google Scholar 

  22. Chang C H, Hsieh H Y (2012) Not every bit counts: A resource allocation problem for data gathering in machine-to-machine communications. IEEE GLOBECOM Conference, Anaheim, CA, pp 5537–5543

    Google Scholar 

  23. Dhillon H S, Huang H C, Viswanathan H, Valenzuela R A (2013) Power-efficient System Design for Cellular-Based Machine-to-Machine Communications. IEEE Trans Wirel Commun 12(11):5740–5753

    Article  Google Scholar 

  24. Fu H-L, Lin P, Yue H, Huang G-M, Lee C-P (2014) Group mobility management for large-scale machine-to-machine mobile networking. IEEE Trans Veh Technol 63(3):1296–1305

    Article  Google Scholar 

  25. Park C W, Hwang D, Lee T-J (2014) Enhancement of IEEE 802.11 ah MAC for M2M Communications. IEEE Commun Lett 18(7):1151–1154

    Article  Google Scholar 

  26. Farhadi G, Ito A (2013) Group-Based Signaling and Access Control for Cellular Machine-to-Machine Communication, IEEE 78th VTC Fall Las Vegas, NV, pp. 1–6

  27. Jeon W S, Kim J, Jeong D G (2014) Downlink radio resource partitioning with fractional frequency reuse in femtocell networks. IEEE Trans Veh Technol 63(1):308–321

    Article  Google Scholar 

  28. Uygungelen S, Auer G, Bharucha Z (2011) Graph-based dynamic frequency reuse in femtocell networks. IEEE 73rd Vehicular Technology Conference (VTC Spring), IEEE

  29. (2014) LTE-EPC Network Simulator (LENA) Iptechwiki, CTTC - Centre Tecnolgic de Telecomunicacions de Catalunya, available online: http://iptechwiki.cttc.es/

  30. Condoluci M, Dohler M, Araniti G, Molinaro A, Zheng K (2015) Toward 5G densenets: architectural advances for effective machine-type communications over femtocells. IEEE Commun Mag 53(1):134–141

    Article  Google Scholar 

  31. Pourmoghadas A, Poonacha P G (2014) Performance Analysis of a Machine-to-Machine Friendly MAC Algorithm in LTE-advanced, Advances in Computing, Communications and Informatics (ICACCI International Conference on IEEE)

  32. Muhammad S Z, Ji L, Liu A X, Pang J, Wang J (2012) A first look at cellular machine-to-machine traffic: large scale measurement and characterization. ACM SIGMETRICS Performance Evaluation Review 40(1):65–76

    Article  Google Scholar 

  33. 3GPP ETSI TS 136 321 V8.3.0 (2008-11) Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (3GPP TS 36.321 version 8.3.0 Release 8) pp. 34

  34. Qualcomm Small Cells UltraSON for Mobility Managmenet available online: https://www.qualcomm.com/invention/research/projects/small-cells/ultrason/mobility-management

  35. Xu J, Wang J, Zhu Y, Yang Y, Zheng X, Wang S, Liu L, Horneman K, Teng Y (2014) Cooperative distributed optimization for the Hyper-Dense small cell deployment. IEEE Commun Mag 52(5):61–67

    Article  Google Scholar 

  36. Ramirez-Perez C, Ramos V (2016) SDN meets SDR in Self-Organizing networks fitting the pieces of network management. IEEE Commun Mag 54(1):48–57

    Article  Google Scholar 

  37. Tsagkaris K, Poulios G, Demestichas P, Tall A, Altman Z, Destre C (2015) An open framework for programmable Self-Managed radio access networks. IEEE Commun Mag 53(7):154– 161

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) [Grant number S-2015-0849-000].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navrati Saxena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumbhar, F.H., Roy, A. & Saxena, N. RoBiN: Random Access using Border Routers in Cellular Networks. Mobile Netw Appl 21, 620–634 (2016). https://doi.org/10.1007/s11036-016-0751-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-016-0751-3

Keywords

Navigation