Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Petz–Rényi relative entropy of thermal states and their displacements

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this letter, we obtain the precise range of the values of the parameter \(\alpha \) such that Petz–Rényi \(\alpha \)-relative entropy \(D_{\alpha }(\rho ||\sigma )\) of two faithful displaced thermal states is finite. More precisely, we prove that, given two displaced thermal states \(\rho \) and \(\sigma \) with inverse temperature parameters \(r_1, r_2,\ldots , r_n\) and \(s_1,s_2, \ldots , s_n\), respectively, \(0<r_j,s_j<\infty \), for all j, we have

$$\begin{aligned} D_{\alpha }(\rho ||\sigma )<\infty \Leftrightarrow \alpha< \min \left\{ \frac{s_j}{s_j-r_j}: j \in \{ 1, \ldots , n \} \text { such that } r_j<s_j \right\} , \end{aligned}$$

where we adopt the convention that the minimum of an empty set is equal to infinity. This result is particularly useful in the light of operational interpretations of the Petz–Rényi \(\alpha \)-relative entropy in the regime \(\alpha >1 \). Along the way, we also prove a special case of a conjecture of Seshadreesan et al. (J Math Phys 59(7):072204, 2018. https://doi.org/10.1063/1.5007167).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

The data that supports the findings of this study are available within the article.

References

  1. Nussbaum, M., Szkoła, A.: The Chernoff lower bound for symmetric quantum hypothesis testing. Ann. Stat. 37(2), 1040–1057 (2009). https://doi.org/10.1214/08-AOS593

    Article  MathSciNet  Google Scholar 

  2. Mosonyi, M.: Hypothesis testing for Gaussian states on bosonic lattices. J. Math. Phys. 50(3), 032105 (2009). https://doi.org/10.1063/1.3085759

    Article  ADS  MathSciNet  Google Scholar 

  3. Seshadreesan, K.P., Lami, L., Wilde, M.M.: Rényi relative entropies of quantum Gaussian states. J. Math. Phys. 59(7), 072204 (2018). https://doi.org/10.1063/1.5007167

    Article  ADS  MathSciNet  Google Scholar 

  4. Rényi, A.: On measures of entropy and information. In: Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. I, pp. 547–561. University of California Press, Berkeley (1961)

  5. Petz, D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23(1), 57–65 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  6. Androulakis, G., John, T.C.: Quantum f-divergences via Nussbaum–Szkoła distributions and applications to f-divergence inequalities. Rev. Math. Phys. (2023). https://doi.org/10.1142/S0129055X23600024

    Article  Google Scholar 

  7. Androulakis, G., John, T.C.: Relative entropy via distribution of observables. Infin. Dimens. Anal. Quantum Probab. Relat. Top. (2023). https://doi.org/10.1142/S0219025723500212

    Article  Google Scholar 

  8. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012). https://doi.org/10.1103/RevModPhys.84.621

    Article  ADS  Google Scholar 

  9. Parthasarathy, K.R.: A pedagogical note on the computation of relative entropy of two n-mode Gaussian states. In: Accardi, L., Mukhamedov, F., Al Rawashdeh, A. (eds.) Infinite Dimensional Analysis, Quantum Probability and Applications, pp. 55–72. Springer, Berlin (2022). https://doi.org/10.1007/978-3-031-06170-7_2

    Chapter  Google Scholar 

  10. Bellomo, G., Bosyk, G., Holik, F., Zozor, S.: Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum rényi entropy. Sci. Rep. 7(1), 14765 (2017)

    Article  ADS  Google Scholar 

  11. Zhang, H.: From Wigner–Yanase–Dyson conjecture to Carlen–Frank–Lieb conjecture. Adv. Math. 365, 107053 (2020)

    Article  MathSciNet  Google Scholar 

  12. Camilo, G., Landi, G.T., Eliëns, S.: Strong subadditivity of the Rényi entropies for bosonic and fermionic Gaussian states. Phys. Rev. B 99, 045155 (2019). https://doi.org/10.1103/PhysRevB.99.045155

    Article  ADS  Google Scholar 

  13. Adesso, G., Girolami, D., Serafini, A.: Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2. Phys. Rev. Lett. 109, 190502 (2012). https://doi.org/10.1103/PhysRevLett.109.190502

    Article  ADS  Google Scholar 

  14. Camilo, G., Landi, G.T., Eliëns, S.: Strong subadditivity of the Rényi entropies for bosonic and fermionic Gaussian states. Phys. Rev. B Condens. Matter 99, 045155 (2019). https://doi.org/10.1103/PhysRevB.99.045155

    Article  ADS  Google Scholar 

  15. Iosue, J.T., Ehrenberg, A., Hangleiter, D., Deshpande, A., Gorshkov, A.V.: Page curves and typical entanglement in linear optics. Quantum 7, 1017 (2023)

    Article  Google Scholar 

  16. Parthasarathy, K.R.: An introduction to quantum stochastic calculus. ser. Modern Birkhäuser Classics. Birkhäuser/Springer, Basel (1992). [2012 reprint of the 1992 original] [MR1164866]. [Online]. Available: https://doi.org/10.1007/978-3-0348-0566-7

  17. Parthasarathy, K.R.: What is a Gaussian state? Commun. Stoch. Anal. 4(2), 143–160 (2010)

    MathSciNet  Google Scholar 

  18. Androulakis, G., John, T.C.: Quantum \(f\)-divergences via Nussbaum–Szkoła distributions with applications to Petz–Rényi and von Neumann relative entropy, p. xx. arXiv (2022). https://doi.org/10.48550/arXiv.2203.01964

  19. Bhat, B.V.R., John, T.C., Srinivasan, R.: Infinite mode quantum Gaussian states. Rev. Math. Phys. 31, 1950030 (2019). https://doi.org/10.1142/S0129055X19500302

    Article  MathSciNet  Google Scholar 

  20. Jenčová, A., Petz, D., Pitrik, J.: Markov triplets on CCR-algebras. Acta Sci. Math. (Szeged) 76(1–2), 111–134 (2010)

    Article  MathSciNet  Google Scholar 

  21. Szegő, G.: Orthogonal Polynomials, Series American Mathematical Society : Colloquium Publication. American Mathematical Society (1939). https://books.google.com/books?id=ZOhmnsXlcY0C

  22. Wikipedia Contributors: Laguerre Polynomials—Wikipedia, the Free Encyclopedia (2023). https://en.wikipedia.org/w/index.php?title=Laguerre_polynomials &oldid=1133988685. Accessed 19 Feb 2023

Download references

Acknowledgements

The authors are grateful to the referees whose suggestions greatly improved the article. The second author wishes to acknowledge the Army Research Office MURI award ‘Theory and Engineering of Large-Scale Distributed Entanglement Quantum Network Science—QNS’ awarded under grant number W911NF2110325—ARO MURI. The second author also thanks the Fulbright Scholar Program and the United States-India Educational Foundation for providing funding to conduct part of this research through a Fulbright-Nehru Postdoctoral Fellowship (Award No. 2594/FNPDR/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiju Cherian John.

Ethics declarations

Conflict of interest

The authors do not have any Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both authors contributed equally in the article.

A Appendix

A Appendix

1.1 Single mode Weyl unitary operators

The classical Laguerre polynomials play an important role in our analysis of Weyl unitary operators in 1-mode. The Laguerre polynomials are defined as

$$\begin{aligned} L_j(x)=\sum _{k=0}^j \left( {\begin{array}{c}j\\ k\end{array}}\right) \frac{(-1)^k}{k !}x^k, \quad j=0,1,2,\ldots . \end{aligned}$$
(A.1)

The following proposition is available in [20] with a different proof.

Proposition A.1

[20] Let \(L_j\) denote the j-th Laguerre polynomial, \(j\in \mathbb {Z}_{\ge 0}\). Then the 1-mode Weyl unitary operator at \(u\in \mathbb {C}\), satisfy

Proof

For clarity of writing in the proof, we denote the particle basis vector of \(\Gamma (\mathbb {C})\) as \(f_j\). Notice that \(f_i\otimes f_j = f_{i+j}\) for \(i,j\ge 0\). Note also that in the one-mode case \(u=uf_1\) for all \(u\in \mathbb {C}\). So, we have

$$\begin{aligned} (u+t f_1)^{\otimes ^\ell }=(u+t)^\ell \left( f_1\right) ^{\otimes ^\ell } = \sum _{m=0}^{\ell }\left( {\begin{array}{c}\ell \\ m\end{array}}\right) u^{\ell -m}t^mf_{\ell }, \quad \forall u\in \mathbb {C}, t\in \mathbb {R}. \end{aligned}$$

Now, by the definition of exponential vectors and the action of Weyl unitary operators on the exponential vectors (2.15),

Identifying the coefficient of \(t^j\) on both sides of the equation above and writing \(m+k=j\), we have

$$\begin{aligned} W(u) f_j=\sqrt{j !} \exp \left\{ -\frac{1}{2}|u|^2\right\} \left( \sum _{\{m,k \ge 0\mid m+k = j\}} (-1)^k \frac{ \bar{u}^k}{k !}\right) \left( \sum _{\ell =m}^{\infty } \frac{\left( {\begin{array}{c}\ell \\ m\end{array}}\right) u^{{\ell -m}} }{\sqrt{\ell !}}f_{\ell }\right) . \end{aligned}$$
(A.2)

Hence, from (A.2), we get

$$\begin{aligned} \left\langle f_j \mid W(u) f_j\right\rangle&= \sqrt{j !} \exp \left\{ -\frac{1}{2}|u|^2\right\} \left( \sum _{\{m,k \ge 0\mid m+k = j\}} (-1)^k \frac{ \bar{u}^k}{k !}\right) \sum _{\ell =m}^{\infty }\left( {\begin{array}{c}\ell \\ m\end{array}}\right) \frac{u^{\ell -m}}{\sqrt{\ell !}}\left\langle f_j | f_{\ell }\right\rangle \\&= \sqrt{j !} \exp \left\{ -\frac{1}{2}|u|^2\right\} \left( \sum _{\{m,k \ge 0\mid m+k = j\}} (-1)^k \frac{ \bar{u}^k}{k !}\right) \sum _{\ell =m}^{\infty }\left( {\begin{array}{c}\ell \\ m\end{array}}\right) \frac{u^{\ell -m}}{\sqrt{\ell !}}\delta _{j,\ell }\\&= \sqrt{j !} \exp \left\{ -\frac{1}{2}|u|^2\right\} \left( \sum _{\{m,k \ge 0\mid m+k = j\}} (-1)^k \frac{ \bar{u}^k}{k !}\right) \left( {\begin{array}{c}j\\ m\end{array}}\right) \frac{u^{j-m}}{\sqrt{j !}}\\&= \sqrt{j !} \exp \left\{ -\frac{1}{2}|u|^2\right\} \left( \sum _{\{m,k \ge 0\mid m+k = j\}} (-1)^k \frac{ \bar{u}^k}{k !} \left( {\begin{array}{c}j\\ j-k\end{array}}\right) \frac{u^{k}}{\sqrt{j !}}\right) \\&=\sqrt{j !} \exp \left\{ -\frac{1}{2}|u|^2\right\} \sum _{k=0}^j \frac{(-1)^k\bar{u}^k}{k !}\left( {\begin{array}{c}j\\ k\end{array}}\right) \frac{u^k}{\sqrt{j !}} \\&=\exp \left\{ -\frac{1}{2}|u|^2\right\} \sum _{k=0}^j(-1)^k\left( {\begin{array}{c}j\\ k\end{array}}\right) \frac{\left( |u|^2\right) ^k}{k !}. \end{aligned}$$

Thus from (A.1), we get

\(\square \)

Lemma A.2

For every \(u\in \mathbb {C}\), there is an infinite sequence of positive integers j such that

$$\begin{aligned} \big |\sin (2 \sqrt{j}|u|+\pi / 4)\big | \geqslant \frac{1}{\sqrt{2}}. \end{aligned}$$

Proof

Observe that

Notice that

$$\begin{aligned} \begin{aligned}&m \pi +\frac{\pi }{4} \leqslant 2 \sqrt{j}|u|+\frac{\pi }{4} \leqslant m \pi +\frac{3 \pi }{4} \Leftrightarrow \left( \frac{m \pi }{2|u|}\right) ^2 \leqslant j \leqslant \left( \frac{m \pi }{2|u|}\right) ^2+\frac{m \pi ^2}{4|u|^2}+\frac{\pi ^2}{16| u|^2}. \end{aligned} \end{aligned}$$

Since both \(\frac{m \pi ^2}{4|u|^2}+\frac{\pi ^2}{16| u|^2} \rightarrow \infty \) and \(\left( \frac{m \pi }{2|u|}\right) ^2 \rightarrow \infty \) as \(m\rightarrow \infty \), we can find an infinite sequence of positive integers m such that the intervals

$$I_m=\left[ \left( \frac{m \pi }{2|u|}\right) ^2,\left( \frac{m \pi }{2|u|}\right) ^2+\frac{m \pi ^2}{4|u|^2}+\frac{\pi ^2}{16| u|^2}\right] $$

are pairwise disjoint and have lengths bigger than one. Therefore, for every such interval we can choose a positive integer j in \(I_m\). Thus we have an infinite sequence of j’s such that

$$\begin{aligned} |\sin (2 \sqrt{j}|u|+\pi / 4)| \geqslant \frac{1}{\sqrt{2}}. \end{aligned}$$

\(\square \)

Proposition A.3

For every \(u\in \mathbb {C}\), there exists \(C>0\) such that

for infinitely many \(j\in \mathbb {Z}_{\ge 0}\).

Proof

By Proposition A.1 it is enough to show that for every \(u\in \mathbb {C}\), there exists \(C>0\) such that

for infinitely many \(j\in \mathbb {Z}_{\ge 0}\). By Fejér’s formula [21, Theorem 8.22.1] (alternatively [22] taking \(\alpha =0\)), we have for large j’s

$$L_j(x)=\frac{j^{-\frac{1}{4}}}{\sqrt{\pi }} \frac{e^{\frac{x}{2}}}{x^{\frac{1}{4}}} \sin \left( 2 \sqrt{j x}+\frac{\pi }{4}\right) +O\left( j^{-\frac{3}{4}}\right) , \quad \forall x >0.$$

Taking , we get

Using Lemma A.2 we see that there exists positive constants \(C_1\) and \(C_2\) (depending only on u) such that for infinitely many j’s

Thus for every \(\epsilon >0\), there exists \(C>0\) such that

for infinitely many j’s. We conclude the proof by choosing \(\epsilon = 1/8.\) \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Androulakis, G., John, T.C. Petz–Rényi relative entropy of thermal states and their displacements. Lett Math Phys 114, 57 (2024). https://doi.org/10.1007/s11005-024-01805-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-024-01805-z

Keywords

Mathematics Subject Classification

Navigation