Abstract
The present discussion is about the unsteady two-dimensional flow of mixed convection and nonlinear thermal radiation in the presence of water-based carbon nanotubes over the vertically convected stretched sheet embedded in a Darcy’ Forchheimer porous media. Saffman’s proposed model is used for the suspension of fine dust particles in the nanofluid. A strong magnetic field (MHD) is applied normal to the flow which governs the Hall current effects. Khanafer Vafai Lightstone model estimated the effect of thermal conductivity and viscosity of the carbon nanotubes. Boundary layer approximation is utilized to built the nonlinear partial differential equations (PDEs). Similarity transformation is applied to convert these PDEs into the system of ordinary differential equations. Problem is solved numerically by bvp4c, using MATLAB software. It is observed through the analysis that the thermal field of nanofluid and the temperature boundary layer are much more higher than that of the dust phase, and these are further enhanced for the higher radiation parameter.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- \(b,\alpha \) :
-
A real constant
- \(B_{0}\) :
-
Magnetic induction \((\hbox {kg}\,\hbox {s}^{-2}\,\hbox {A}^{-1})\)
- Bi :
-
Biot number
- C :
-
Specific heat \((\hbox {J}\,\hbox {kg}^{-1}\,\hbox {K}^{-1})\)
- E :
-
Intensity vector of the electric field
- \(F^{\prime }\) :
-
Dimensionless velocity of dust
- F :
-
Inertia coefficient of porous medium
- \(F_{\mathrm{p}}\) :
-
Force due to dust particles
- \(F_{\mathrm{b}}\) :
-
Body forces
- \(f^{\prime }\) :
-
Dimensionless velocity
- \(F_{\mathrm{r}}\) :
-
Inertia coefficient
- g :
-
Gravitational acceleration \((\hbox {m}\,\hbox {s}^{-2})\)
- \(Gr_{\mathrm{x}}\) :
-
Grashof number
- h :
-
Dimensionless transverse velocity
- \(h_{\mathrm{c}}\) :
-
Heat flux coefficient \((\hbox {W}\,\hbox {m}^{-1}\,\hbox {K}^{-1})\)
- J :
-
Current density vector
- \(K^{*}\) :
-
Permeability of porous medium
- l :
-
Mass concentration of dust
- \({m}_{\mathrm{p}}\) :
-
Mass of dust particles
- Nu :
-
Local Nusselt number
- \(n_{\mathrm{e}}\) :
-
Number density of electron
- \(P_{\mathrm{e}}\) :
-
Electron pressure
- P :
-
Pressure
- Pr :
-
Prandtl number
- \(Q_{\mathrm{p}}\) :
-
Thermal interaction between nanoparticles and dust phase
- \(q_{\mathrm{w}}\) :
-
Surface heat flux
- \(q_{\mathrm{r}}\) :
-
Radiation heat flux
- Rd :
-
Thermal radiation parameter
- \(r_{\mathrm{p}}\) :
-
Radius of dust particles
- \(Re_{\mathrm{x}}\) :
-
Local Reynolds number
- S :
-
Unsteadyness parameter
- t :
-
Time
- t :
-
Fluid temperature \((\hbox {K})\)
- Uw :
-
Deformation velocity of the sheet
- U(u, v, w):
-
Velocity vector \((\hbox {m}\,\hbox {s}^{-1})\)
- V(u, v, w):
-
Velocity vector \((\hbox {m}\,\hbox {s}^{-1})\)
- (x, y, z):
-
Axial and normal coordinates
- \(\beta _{{\upnu }}\) :
-
Momentum dust parameter
- \(\beta _{\mathrm{T}}\) :
-
Thermal expansion coefficient
- \(\beta _{\mathrm{t}}\) :
-
Thermal dust parameter
- \(\gamma \) :
-
Specific heat ratio
- \(\delta \) :
-
Porosity parameter
- \(\eta \) :
-
Dimensionless normal distance
- \(\theta \) :
-
Dimensionless temperature
- \(\theta _{\mathrm{w}}\) :
-
Temperature ratio parameter
- \(\kappa \) :
-
Thermal conductivity \((\hbox {W}\,\hbox {m}^{-1}\,\hbox {K}^{-1})\)
- \(\lambda \) :
-
Mixed convection parameter
- \(\mu \) :
-
Dynamic viscosity
- \(\sigma \) :
-
Electric conductivity
- \(\sigma ^{*}\) :
-
Stefan–Boltzmann constant \((\hbox {m}^{2}\,\hbox {s}^{-1})\)
- \(\tau _{\mathrm{e}}\) :
-
Electron collision time
- \(\tau _{\mathrm{T}}\) :
-
Thermal relaxation time of dust phase
- \(\tau _{\upnu }\) :
-
Momentum relaxation time of dust phase
- \(\tau _{\mathrm{wx}}\) :
-
Wall shear stress in x direction
- \(\omega \) :
-
Frequency
- \(\omega _{\mathrm{e}}\) :
-
Electron frequency
- \(\varkappa \) :
-
Nanoparticle volume fraction
- \(\psi \) :
-
Stream function \((\hbox {m}^{2}\,\hbox {s}^{-1}) \)
- \(\varOmega \) :
-
Rotational parameter
- \(\rightthreetimes \) :
-
Absorption coefficient
- nf:
-
Nanofluid
- f:
-
Base fluid
- s:
-
Nanoparticles (CNTs)
- p:
-
Dust phase/particles
- w:
-
Wall
- e:
-
Charge on electron
References
Doronin GG, Larkin NA. Mathematical problems for a dusty gas flow. Boletim Da Sociedade Paranaense de Matemtica Terceira Srie. 2004;22(1):21–9.
Farbar L, Morley MJ. Heat transfer to flowing gas-solid mixtures in a circular tube. Ind Eng Chem. 1957;49:1143–50.
Saffman PG. On the stability of laminar flow of a dusty gas. J Fluid Mech. 1962;13:120–8.
Attia HA, Abbas W, Abdeen MAM. Ion slip effect on unsteady Couette flow of a dusty fluid in the presence of uniform suction and injection with heat transfer. J Braz Soc Mech Sci Eng. 2016;38(8):2381–91.
Koneri LK, Gireesha BJ, Mahanthesh B, Gorla RSR. Influence of nonlinear thermal radiation and magnetic field on upper-convected Maxwell fluid flow due to a convectively heated stretching sheet in the presence of dust particles. Commun Numer anal. 2016;1:57–73.
Sandeep N, Sulochana C, Kumar BR. Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface. Eng Sci Technol Int J. 2016;19:227–40.
Pop I, Hamid RA, Nazar R. Boundary layer flow of a dusty fluid over a permeable shrinking surface. Int J Numer Methods Heat Fluid Flow. 2017;27(4):1–19.
Ghadikolaei SS, Hosseinzadeh K, Yassari M, Sadeghi H, Ganji DD. Boundary layer analysis of micropolar dusty fluid with \(TiO_{2}\) nanoparticles in a porous medium under the effect of magnetic field and thermal radiation over a stretching sheet. J Mol Liq. 2017;244:374–89.
Siddiqa S, Begum N, Ouazzi A, Hossain MA, Gorla RSR. Heat transfer analysis of Casson dusty fluid flow along a vertical wavy cone with radiating surface. Int J Heat Mass Transf. 2018;127:589–96.
Gireesha BJ, Mahanthesh B, Thammanna GT, Sampathkumar PB. Hall effects on dusty nanofluid two-phase transient flow past a stretching sheet using KVL model. J Mol Liq. 2018;256:139–47.
Bear J. Dynamics of fluids in porous media. New York: Dover; 1972.
Hellstrom JGI, Lundstrom TS. Flow through porous media at moderate Reynolds number. In: 4th Int. Sci. Colloquium: Model. Mat. Proc. Uni. Latvia, Riga, Latvia; 2006. p. 8–9.
Sobieski W, Trykozko A. Darcy’s and Forchheimer’s laws in practice. Part 1. The experiment. Tech. Sci. 2014;17(4):321–35.
Chapman RE. Geology and water: an introduction to fluid mechanics for geologists. The Hague: Martinus Nijho & Dr. W. Junk Publishers; 1981.
Forchheimer P. Wasserbewegung durch boden. Z. Ver D. Ing. 1901;45:1782–8.
Ewing R, Lazarov R, Lyonss L, Papavassiliou DV, Pasciak J, Qin GX. Numerical well model for non-Darcy flow. Comput. Geosci. 1999;3(3):185–204.
Shehzad SA, Abbasi FM, Hayat T, Alsaedi A. Cattaneo-Christov heat flux model for Darcy-Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection. J Mol Liq. 2016;224:274–8.
Rami YJ, Fawzi A, Fahmi AAR. Darcy-Forchheimer mixed convection heat and mass transfer in fluid saturated porous media. Int J Numer Methods Heat Fluid Flow. 2001;11(6):600–18.
Sobieski W, Trykozko A. Sensitivity aspects of Forchheimers approximation. Trans Porous Media. 2011;89(2):155–64.
Hayat T, Haider F, Muhammad T, Alsaedi A. Darcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous heterogeneous reactions. PLoS ONE. 2017;12(4):e0174938.
Muhammad T, Alsaedi A, Shehzad SA, Hayat T. A revised model for Darcy Forchheimer flow of Maxwell nanofluid subject to convective boundary condition. Chin J Phys. 2017;55(3):963–76.
Sajid T, Sagheer M, Hussain S, Bilal M. Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy. AIP Adv. 2018;8:035102.
Alzahrani AK. Importance of Darcy Forchheimer porous medium in 3D convective flow of carbon nanotubes. Phys Lett A. 2018;382(42):2938–43.
Majeed A, Zeeshan A, Alamri SZ, Ellah R. Heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet with suction. Neural Comput Appl. 2018;30(6):1947–55.
Alamri SZ, Ellahi R, Shehzad N, Zeeshan A. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Mol Liq. 2018;273:292–304.
Shehzad N, Zeeshan A, Ellahi R, Rashidi S. Modelling study on internal energy lossd due to entropy generation for non-Darcy poiseuille flow of silver-water nanofluid: an application of purification. Entropy. 2018;20:851.
Hassan M, Marinb M, Alsharif A, Ellahi R. Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Phys Lett A. 2018;382(38):2749–53.
Hassan M, Marinb M, Alsharif A, Ellahi R. Numerical investigation and optimization of mixed convection in ventilated square cavity filled with nanofluid of different Inlet and outlet port. Int J Numer Methods Heat Fluid Flow. 2017;27(9):2053–69.
Rashidi S, Akar S, Bovand M, Ellahi R. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew Energy. 2018;115:400–10.
Khanafer K, Vafai K. Applications of nanofluids in porous medium. J Therm Anal Calorim. 2019;135:1479–92.
Freidoonimehr N, Rahimi AB. Brownian motion effect on heat transfer of a three-dimensional nanofluid flow over a stretched sheet with velocity slip. J Therm Anal Calorim. 2019;135:207–22.
Ramzan M, Bilal M, Chung JD. Radiative Williamson nanofluid flow over a convectively heated Riga plate with chemical reaction—a numerical approach. Chin J Phys. 2017;55:1663–73.
Ramzan M, Bilal M, Chung JD. Effects of thermal and solutal stratification on Jeffrey magneto-nanofluid along an inclined stretching cylinder with thermal radiation and heat generation/absorption. Int J Mech Sci. 2017;131:317–24.
Turkyilmazoglu M. Buongiorno model in a nanofluid filled a symmetric channel fulfilling zero net particle flux at the walls. Int J Heat Mass Transf. 2018;126:974–9.
Turkyilmazoglu M. Fluid flow and heat transfer over a rotating and vertically moving disk. Phys Fluids. 2018;30:063605.
Zeeshan A, Ijaz N, Abbas T, Ellahi R. The sustainable characteristic of Bio-Bi-phase flow of peristaltic transport of MHD Jeffrey fluid in the human body. Sustainability. 2018;10:2671.
Turkyilmazoglu M. Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions. Phys Fluids. 2016;28:043102.
Turkyilmazoglu M. Analytical solutions to mixed convection MHD fluid flow induced by a nonlinearly deforming permeable surface. Commun Nonlinear Sci Numer Simul. 2018;63:373–9.
Timofeeva VE, Routbort JL, Signh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106(1):014304.
Murshed SMS, Nietode Castro CA, Lourenco MJV, Lopes MLM, Santos FJV. A review of boiling and convective heat transfer with nanofluids. Renew Sustain Energy Rev. 2011;15(5):2342–54.
Hussien AA, Yusop NM, Abdullah MZ, Al-Nimr MA, Khavarian M. Study on convective heat transfer and pressure drop of MWCNTs water nanofluid in mini-tube. J Therm Anal Calorim. 2019;135:123–32.
Padilha GS, Campos VAB, Costa MC, Franco TT. Multi-walled carbon nanotubes used as support for lipase from Burkholderia cepacia. J Therm Anal Calorim. 2018;134(2):1021–9.
Choi SUS, Zang ZG, Yu Z, Lookwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Nanosci Appl Phys Lett. 2001;79:2252–4.
Kandasamy R, Mohammad R, Muhaimin I. Carbon nanotubes on unsteady MHD non-Darcy flow over porous wedge in presence of thermal radiation energy. Appl Math Mech Engl. 2016;37(8):1031–40.
Bilal M, Hussain S, Sagheer M. Boundary layer flow of magneto-micropolar nanofluid flow with Hall and ion-slip effects using variable thermal diffusivity. Bull Pol Acad Tech Sci. 2017;65(3):383–90.
Ramzan M, Bilal M, Chung JD. Soret and Dufour effects on three dimensional upper-convected Maxwell fluid with chemical reaction and non-linear radiative heat flux. Int J Chem Reactor Eng. 2017;15(3):20160136.
Lu DC, Ramzan M, Bilal M, Chung JD, Farooq U. A numerical investigation of 3-D MHD rotating flow with binary chemical reaction, activation energy and non-Fourier heat flux. Commun Theor Phys. 2018;70:89–96.
Hayat T, Muhammad T, Shehzad SA, Alsaedi A. On magnetohydrodynamic flow of nanofluid due to a rotating disk with slip effect: a numerical study. Comput Methods Appl Mech Eng. 2017;315:467–77.
Turkyilmazoglu M. Magnetohydrodynamics two-phase dusty fluid flow and heat model over deforming isothermal surfaces. Phys Fluids. 2017;29:013302.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bilal, M., Ramzan, M. Hall current effect on unsteady rotational flow of carbon nanotubes with dust particles and nonlinear thermal radiation in Darcy–Forchheimer porous media. J Therm Anal Calorim 138, 3127–3137 (2019). https://doi.org/10.1007/s10973-019-08324-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-019-08324-3