Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

In this paper, we discuss scheduling problems in semiconductor manufacturing. Starting from describing the manufacturing process, we identify typical scheduling problems found in semiconductor manufacturing systems. We describe batch scheduling problems, parallel machine scheduling problems, job shop scheduling problems, scheduling problems with auxiliary resources, multiple orders per job scheduling problems, and scheduling problems related to cluster tools. We also present important solution techniques that are used to solve these scheduling problems by means of specific examples, and report on known implementations. Finally, we summarize some of the challenges in scheduling semiconductor manufacturing operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Management Science, 34, 391–401.

    Article  Google Scholar 

  • Agrawal, G. K., & Heragu, S. S. (2006). A survey of automated material handling systems in 300-mm semiconductor fabs. IEEE Transactions on Semiconductor Manufacturing, 19(1), 112–120.

    Article  Google Scholar 

  • Akcali, E., & Uzsoy, R. (2000). A sequential solution methodology for capacity allocation and lot scheduling problems for photolithography. In IEEE/CPMT international electronics manufacturing technology symposium (pp. 374–381).

    Google Scholar 

  • Akcali, E., Nemoto, K., & Uzsoy, R. (2001). Cycle-time improvements for photolithography process in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 14(1), 48–56.

    Article  Google Scholar 

  • Almeder, C., & Mönch, L. (2009). Variable neighbourhood search for parallel batch machine scheduling. In Proceedings of VIII metaheuristic international conference (MIC).

    Google Scholar 

  • Applied Materials (2010). Applied real-time dispatcher. Available at: http://www.appliedmaterials.com/products/rt_dispatch_2.html last accessed on 15 August 2010.

  • Atherton, L., & Atherton, R. W. (1995). Wafer fabrication: factory performance and analysis. Boston: Kluwer Academic.

    Google Scholar 

  • Balasubramanian, H., Mönch, L., Fowler, J. W., & Pfund, M. (2004). Genetic algorithm based scheduling of parallel batch machines with incompatible job families to minimize total weighted tardiness. International Journal of Production Research, 42(8), 1621–1638.

    Article  Google Scholar 

  • Barua, A., Narasimhan, R., Upasani, A. A., & Uzsoy, R. (2005). Implementing global factory schedules in the face of stochastic disruptions. International Journal of Production Research, 43(4), 94–109.

    Article  Google Scholar 

  • Bianco, L., Ricciardelli, S., Rinaldi, G., & Sassano, A. (1988). Scheduling tasks with sequence-dependent processing times. Naval Research Logistics, 35(2), 177–184.

    Article  Google Scholar 

  • Bitran, G. R., & Tirupati, D. (1988). Development and implementation of a scheduling system for a wafer fabrication facility. Operations Research, 36(3), 377–395.

    Article  Google Scholar 

  • Bixby, R., Burda, R., & Miller, D. (2006). Short-interval detailed production scheduling in 300-mm semiconductor manufacturing using mixed integer and constraint programming. In Advanced semiconductor manufacturing conference (pp. 148–154).

    Google Scholar 

  • Brucker, P., & Knust, S. (2006). Complex scheduling. Berlin: Springer.

    Google Scholar 

  • Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M. Y., Potts, C. N., Tautenhahn, T., & van de Velde, S. (1998). Scheduling a batching machine. Journal of Scheduling, 1, 31–54.

    Article  Google Scholar 

  • Bureau, M., Dauzere-Peres, S., Yugma, C., Vermarien, L., & Maria, J.-B. (2007). Simulation results and formalism for global–local scheduling in semiconductor manufacturing. In Proceedings of the 2007 winter simulation conference (pp. 1768–1773).

    Chapter  Google Scholar 

  • Cai, Y., Kutanoglu, E., Hasenbein, J., & Quin, J. (2011, to appear). Scheduling with advanced process control constraints. Journal of Scheduling.

  • Cakici, E., & Mason, S. J. (2007). Parallel machine scheduling subject to auxiliary resource constraints. Production Planning and Control, 18(3), 217–225.

    Article  Google Scholar 

  • Chandra, S. M., Mathirajan, M., Gopinath, R., & Sivakumar, A. I. (2008). Taboo search methods for scheduling a burn-in oven with non-identical job sizes and secondary resource constraints. International Journal of Operational Research, 3(1–2), 119–139.

    Google Scholar 

  • Chien, C.-F., & Chen, C.-H. (2007). A novel timetabling algorithm for a furnace process for semiconductor fabrication with constrained waiting and frequency-based setups. OR Spectrum, 29, 391–419.

    Article  Google Scholar 

  • Choi, S.-Y., Kim, Y.-D., & Joo, B.-J. (2005). Scheduling wafer lots on diffusion machines in a semiconductor wafer fabrication facility. In Proceedings of the international conference on modeling and analysis of semiconductor manufacturing (MASM) (pp. 28–33).

    Google Scholar 

  • Choung, Y.-I., Jun, K.-S., Han, D.-S., Jang, Y.-C., Lee, T.-E., & Leachman, R. C. (2001). Design of a scheduling system for diffusion processes. In Proceedings of the international conference on modeling and analysis of semiconductor manufacturing (MASM) (pp. 69–73).

    Google Scholar 

  • Cochran, J. K., Horng, S.-M., & Fowler, J. W. (2003). A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Computers and Operations Research, 30(7), 1087–1102.

    Article  Google Scholar 

  • Damodaran, P., Vélez-Gallego, M.-C., & Maya, J. (2009, to appear). A GRASP approach for makespan minimization on parallel batch processing machines. Journal of Intelligent Manufacturing.

  • de Diaz, S. L. M., Fowler, J. W., Pfund, M. E., Mackulak, G. T., & Hickie, M. (2005). Evaluating the impacts of reticle requirements in semiconductor wafer fabrication. IEEE Transactions on Semiconductor Manufacturing, 18(4), 622–632.

    Article  Google Scholar 

  • Demirkol, E., & Uzsoy, R. (1997). Performance of decomposition methods for complex workshops under multiple criteria. Computers and Industrial Engineering, 33(1–2), 261–264.

    Article  Google Scholar 

  • Demirkol, E., & Uzsoy, R. (2000). Decomposition methods for re-entrant flow shops with sequence dependent setup times. Journal of Scheduling, 3, 155–177.

    Article  Google Scholar 

  • Demirkol, E., Mehta, S., & Uzsoy, R. (1997). A computational study of shifting bottleneck procedures for shop scheduling problems. Journal of Heuristics, 3, 111–137.

    Article  Google Scholar 

  • Demirkol, E., Mehta, S., & Uzsoy, R. (1998). Benchmarks for shop scheduling problems. European Journal of Operational Research, 109(1), 137–141.

    Article  Google Scholar 

  • Detienne, B., Dauzère-Pérès, S., & Yugma, C. (2009). Scheduling inspection operations subject to a fixed production schedule. In Proceedings of the 4th multidisciplinary international conference on scheduling: theory and applications (MISTA 2009) (pp. 581–593).

    Google Scholar 

  • Driessel, R., & Mönch, L. (2008). An integrated scheduling and automated material handling approach for complex manufacturing systems. In Proceedings of the IEEE international conference on industrial engineering and engineering management.

    Google Scholar 

  • Driessel, R., Hönig, U., Mönch, L., & Schiffmann, W. (2010). A parallel shifting bottleneck heuristic for scheduling complex job shops: architecture and performance assessment. In Proceedings of the conference on automation science and engineering (CASE) (pp. 81–86). Toronto: IEEE.

    Google Scholar 

  • Dümmler, M. (1999). Using simulation and genetic algorithms to improve cluster tool performance. In Proceedings of the 1999 winter simulation conference (pp. 875–879).

    Google Scholar 

  • Essafi, I., Mati, Y., & Dauzère-Pérès, S. (2008). A genetic local search algorithm for minimizing total weighted tardiness in the job shop scheduling problem. Computers and Operations Research, 35(8), 2599–2616.

    Article  Google Scholar 

  • Erramilli, V., & Mason, S. J. (2006). Multiple orders per job compatible batch scheduling. IEEE Transactions on Electronics Packaging Manufacturing, 29(4), 285–296.

    Article  Google Scholar 

  • Erramilli, V., & Mason, S. J. (2008). Multiple orders per job batch scheduling with incompatible jobs. Annals of Operations Research, 159, 245–260.

    Article  Google Scholar 

  • Fordyce, K., Bixby, R., & Burda, R. (2008). Technology that upsets the social order—a paradigm shift in assigning lots to tools in a wafer fabricator—the transition from rules to optimization. In Proceedings of the 2008 winter simulation conference (pp. 2277–2285).

    Chapter  Google Scholar 

  • Fowler, J. W., Horng, S., & Cochran, J. K. (2000). A hybridized genetic algorithm to solve parallel machine scheduling problems with sequence dependent setups. International Journal of Manufacturing Technology and Management, 1(2/9), 156–172.

    Google Scholar 

  • Gan, B. P., Liow, M., Gupta, A. K., Lendermann, P., Turner, S. J., & Wang, X. G. (2007). Analysis of a borderless fab using interoperating AutoSched AP models. International Journal of Production Research, 45(3), 675–697.

    Article  Google Scholar 

  • Geiger, C. D., & Uzsoy, R. (2008). Learning effective sequencing rules for batch processor scheduling. International Journal of Production Research, 46, 1431–1454.

    Article  Google Scholar 

  • Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kann, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5, 287–326.

    Article  Google Scholar 

  • Gupta, A. K., & Sivakumar, A. I. (2005). On-time delivery Pareto controllability for batch processing in semiconductor manufacturing. In Proceedings of the international conference on modeling and analysis of semiconductor manufacturing (MASM) (pp. 13–30).

    Google Scholar 

  • Gupta, A. K., & Sivakumar, A. I. (2006). Job shop scheduling techniques in semiconductor manufacturing. International Journal of Advanced Manufacturing Technology, 27, 1163–1169.

    Article  Google Scholar 

  • Hadavi, K. C. (1994). ReDS: a real time production scheduling system from conception to practice. In M. Zweben & M. S. Fox (Eds.), Intelligent scheduling (pp. 581–604). San Fransisco: Morgan Kaufmann.

    Google Scholar 

  • Jampani, J., & Mason, S. J. (2008). Column generation heuristics for multiple machine, multiple orders per job scheduling problems. Annals of Operations Research, 159(1), 261–273.

    Article  Google Scholar 

  • Jampani, J., & Mason, S. J. (2010). Column generation heuristic for complex job shop multiple orders per job scheduling. Computers and Industrial Engineering, 58, 108–118.

    Google Scholar 

  • Jampani, J., Pohl, E. A., Mason, S., & Mönch, L. (2010). Integrated heuristics for scheduling multiple order jobs in a complex job shop. International Journal of Metaheuristics, 1(2), 156–180.

    Article  Google Scholar 

  • Jia, J., & Mason, S. J. (2009). Semiconductor manufacturing scheduling of jobs containing multiple orders on identical parallel machines. International Journal of Production Research, 47(10), 2565–2585.

    Article  Google Scholar 

  • Jimenez, J., Mackulak, G. T., & Fowler, J. W. (2008). Levels of capacity and material handling system modeling for factory integration decision making in semiconductor wafer fabs. IEEE Transactions on Semiconductor Manufacturing, 21(4), 600–613.

    Article  Google Scholar 

  • Johnzén, C., Dauzère-Pérès, S., Derreumaux, A., Vialletelle, P., & Yugma, Y. (2008). Impact of qualification management on scheduling in semiconductor manufacturing. In Proceedings of the 2008 winter simulation conference (pp. 2059–2066).

    Chapter  Google Scholar 

  • Johnzén, C. (2009). Modeling and optimizing flexible capacity allocation in semiconductor manufacturing. PhD thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, France.

  • Johnzén, C., Dauzère-Pérès, S., & Vialletelle, P. (2011). Flexibility measures for qualification management in wafer fabs. Production Planning and Control, 22(1), 81–90.

    Article  Google Scholar 

  • Jolai, F. (2005). Minimizing number of tardy jobs on a batch processing machine with incompatible job families. European Journal of Operational Research, 162, 184–190.

    Article  Google Scholar 

  • Kempf, K. G. (1994). Intelligently scheduling semiconductor wafer fabrication. In M. Zweben & M. Fox (Eds.), Intelligent scheduling (pp. 517–544). San Fransisco: Morgan Kaufmann.

    Google Scholar 

  • Kempf, K., Uzsoy, R., & Wang, C. (1998). Scheduling a single batch processing machine with secondary resource constraints. Journal of Manufacturing Systems, 17(1), 37–51.

    Article  Google Scholar 

  • Kim, S., Yea, S.-H., & Kim, B. (2002). Shift scheduling for steppers in the semiconductor wafer fabrication process. IIE Transactions, 34, 167–177.

    Google Scholar 

  • Klemmt, A., Weigert, G., Almeder, C., & Mönch, L. (2009). A comparison of MIP-based decomposition techniques and VNS approaches for batch scheduling problems. In Proceedings of the international conference on modeling and analysis of semiconductor manufacturing (MASM) (pp. 1686–1694).

    Google Scholar 

  • Klemmt, A., Weigert, G., & Werner, S. (2011, to appear) MIP approaches for batch scheduling in semiconductor manufacturing. European Journal of Industrial Engineering.

  • Krihnashwamy, S., & Nettles, S. (2005). Scheduling challenges in 300m manufacturing. In Proceedings of the international conference on modeling and analysis of semiconductor manufacturing (MASM) (pp. 231–241).

    Google Scholar 

  • Kurz, M. E., & Mason, S. J. (2008). Minimizing total weighted tardiness on a batch-processing machine with incompatible job families and job ready times. International Journal of Production Research, 46(1), 131–151.

    Article  Google Scholar 

  • Laub, J. D., Fowler, J. W., & Keha, A. B. (2007). Minimizing makespan with multiple-orders-per-job in a two-machine flow-shop. European Journal of Operational Research, 128(1), 63–79.

    Article  Google Scholar 

  • Lee, T.-E. (2008). A review of scheduling theory and methods for semiconductor manufacturing cluster tools. In Proceedings of the 2008 winter simulation conference (pp. 2179–2135).

    Google Scholar 

  • Li, L., Qiao, F., & Wu, Q. (2008). ACO-based scheduling of parallel batch processing machines with incompatible job families to minimize total weighted tardiness. In Proceedings ANTS 2008 (pp. 219–228).

    Google Scholar 

  • Li, L., Qiao, F., & Wu, Q. (2009). ACO-based multi-objective scheduling of parallel batch processing machines with advanced process control constraints. International Journal of Advanced Manufacturing Technology, 44(9–10), 985–994.

    Article  Google Scholar 

  • Malve, S., & Uzsoy, R. (2007). A genetic algorithm for minimizing maximum lateness on parallel identical batch processing machines with dynamic job arrivals and incompatible job families. Computers and Operations Research, 34(10), 3016–3028.

    Article  Google Scholar 

  • MASM (2009). Semiconductor manufacturing testbed: data sets. Arizona State University, http://www.eas.asu.edu/~masmlab/ftp.htm.

  • Mason, S. J., Fowler, J. W., & Carlyle, W. M. (2002). A modified shifting bottleneck heuristic for minimizing total weighted tardiness in complex job shops. Journal of Scheduling, 5(3), 247–262.

    Article  Google Scholar 

  • Mason, S. J., Jin, S., & Wessels, M. C. (2004). Rescheduling strategies for minimizing total weighted tardiness in complex job shops. International Journal of Production Research, 42(3), 613–628.

    Article  Google Scholar 

  • Mason, S. J., Fowler, J. W., Carlyle, W. M., & Montgomery, D. C. (2005). Heuristics for minimizing total weighted tardiness in complex job shops. International Journal of Production Research, 43(10), 1943–1963.

    Article  Google Scholar 

  • Mason, S. J., Kurz, M. E., Pohl, L. M., Fowler, J. W., & Pfund, M. E. (2007). Random keys implementation of NSGA-II for semiconductor manufacturing scheduling. International Journal of Information Technology and Intelligent Computing, 2(3).

  • Mathirajan, M., & Sivakumar, A. I. (2006). Literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor. International Journal of Advanced Manufacturing Technology, 29, 990–1001.

    Article  Google Scholar 

  • Mathirajan, M., Sivakumar, A. I., & Kalaivani, P. (2004). An efficient simulated annealing algorithm for scheduling burn-in oven with non-identical job sizes. International Journal of Applied Management and Technology, 2(2), 117–138.

    Google Scholar 

  • Mehta, S. V., & Uzsoy, R. (1998). Minimizing total tardiness on a batch processing machine with incompatible job families. IIE Transactions, 30, 165–178.

    Article  Google Scholar 

  • Montoya-Torres, J. R. (2006). A literature survey on the design approaches and operational issues of automated wafer-transport systems for wafer fabs. Production Planning and Control, 17(6), 648–663.

    Article  Google Scholar 

  • Mönch, L. (2004). Scheduling-Framework für Jobs auf parallelen Maschinen in komplexen Produktionssystemen. WIRTSCHAFTSINFORMATIK, 46(6), 470–480.

    Google Scholar 

  • Mönch, L., & Almeder, C. (2009). Ant colony optimization for scheduling jobs with incompatible families on parallel batch machines. In Proceedings of the 4th multi-disciplinary international scheduling conference (MISTA) (pp. 106–114), Dublin, Ireland.

    Google Scholar 

  • Mönch, L., & Driessel, R. (2005). A distributed shifting bottleneck heuristic for complex job shops. Computers and Industrial Engineering, 49, 673–680.

    Article  Google Scholar 

  • Mönch, L., Balasubramanian, H., Fowler, J. W., & Pfund, M. E. (2005). Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times. Computers and Operations Research, 32, 2731–2750.

    Article  Google Scholar 

  • Mönch, L., Unbehaun, R., & Choung, Y. I. (2006a). Minimizing earliness and tardiness on a single burn-in oven with a common due date and a maximum available tardiness constraint. OR Spectrum, 28(2), 177–198.

    Article  Google Scholar 

  • Mönch, L., Zimmermann, J., & Otto, P. (2006b). Machine learning techniques for scheduling jobs with incompatible families and unequal ready times on parallel batch machines. Journal of Engineering Applications of Artificial Intelligence, 19(3), 235–245.

    Article  Google Scholar 

  • Mönch, L., Stehli, M., Zimmermann, J., & Habenicht, I. (2006c). The FABMAS multi-agent-system prototype for production control of waferfabs: design, implementation, and performance assessment. Production Planning and Control, 17(7), 701–716.

    Article  Google Scholar 

  • Mönch, L., Schabacker, R., Pabst, D., & Fowler, J. W. (2007). Genetic algorithm-based subproblem solution procedures for a modified shifting bottleneck heuristic for complex job shops. European Journal of Operational Research, 177(3), 2100–2118.

    Article  Google Scholar 

  • Niedermayer, H., & Rose, O. (2004a). Solution approaches for the cluster tool scheduling problem in semiconductor manufacturing. In Proceedings of the 16th European simulation symposium.

    Google Scholar 

  • Niedermayer, H., & Rose, O. (2004b). Approximation of the cycle time of cluster tools in semiconductor manufacturing. In Proceedings of the industrial engineering research conference.

    Google Scholar 

  • Oechsner, S., & Rose, O. (2005). Scheduling cluster tools using filtered beam search and recipe comparison. In Proceedings of the 2005 winter simulation conference (pp. 2203–2210).

    Chapter  Google Scholar 

  • Ovacik, I. M., & Uzsoy, R. (1997). Decomposition methods for complex factory scheduling problems. Massachusetts: Kluwer Academic.

    Book  Google Scholar 

  • Ovacik, I. M., & Uzsoy, R. (1995). Rolling horizon procedures for dynamic parallel machine scheduling with sequence dependent setup times. International Journal of Production Research, 33, 3173–3292.

    Article  Google Scholar 

  • Park, S., Fowler, J. W., Carlyle, M., & Hickie, M. (1999). Assessment of potential gains in productivity due to proactive reticle management. In Proceedings of the 1999 winter simulation conference (pp. 856–864).

    Google Scholar 

  • Pfund, M., Mason, S., & Fowler, J. W. (2006). Dispatching and scheduling in semiconductor manufacturing: state of the art and survey of needs. In J. Herrmann (Ed.), Handbook of production scheduling (pp. 213–241). Heidelberg: Springer.

    Google Scholar 

  • Pfund, M. E., Balasubramanian, H., Fowler, J. W., Mason, S. J., & Rose, O. (2008). A multi-criteria approach for scheduling semiconductor wafer fabrication facilities. Journal of Scheduling, 11(1), 29–47.

    Article  Google Scholar 

  • Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: a review. European Journal of Operational Research, 120, 228–249.

    Article  Google Scholar 

  • Qiu, R.G. (2007). A service-oriented integration framework for semiconductor manufacturing systems. International Journal Manufacturing Technology and Management, 10(2–3), 177–191.

    Article  Google Scholar 

  • Qu, P., & Mason, S. J. (2005). Metaheuristic scheduling of 300 mm jobs containing multiple orders. IEEE Transactions on Semiconductor Manufacturing, 18(4), 633–643.

    Article  Google Scholar 

  • Qu, P., Mason, S. J., & Kutanoglu, E. (2002). Scheduling jobs containing multiple orders. In Proceedings international conference on modeling and analysis of semiconductor manufacturing (MASM) (pp. 264–269).

    Google Scholar 

  • Qu, P., Steinmiller, B., & Mason, S. J. (2004). Incorporating automated material handling systems into a disjunctive graph. In Proceedings of the industrial engineering research conference, Houston.

    Google Scholar 

  • Reichelt, D., & Mönch, L. (2006). Multiobjective scheduling of jobs with incompatible families on parallel batch machines. In LNCS: Vol. 3906. Proceedings of the EvoCop 2006 (pp. 209–211).

    Google Scholar 

  • Robinson, J. K., Fowler, J. W., & Bard, J. F. (1995). The use of upstream and downstream information in scheduling semiconductor batch operations. International Journal of Production Research, 33(7), 1849–1869.

    Article  Google Scholar 

  • Sarin, S. C., Varadarajan, A., & Wang, L. (2011). A survey of dispatching rules for operational control in wafer fabrication. Production Planning and Control, 22(1), 4–24.

    Article  Google Scholar 

  • Scholl, W., & Domaschke, J. (2000). Implementation of modeling and simulation in semiconductor wafer fabrication with time constraints between wet etch and furnace operations. IEEE Transactions on Semiconductor Manufacturing, 13(3), 273–277.

    Article  Google Scholar 

  • Song, Y., Zhang, M. T., Yi, J., Zhang, L., & Zheng, L. (2007). Bottleneck station scheduling in semiconductor assembly and test manufacturing using ant colony optimization. IEEE Transactions on Automation Science and Engineering, 4(4), 569–578.

    Article  Google Scholar 

  • Souriraja, K., & Uzsoy, R. (2007). Hybrid decomposition heuristics for solving large-scale scheduling problems in semiconductor wafer fabrication. Journal of Scheduling, 10, 41–65.

    Article  Google Scholar 

  • Srinivasa Raghavan, N. R., & Venkataramana, M. (2006). Scheduling parallel batch processors with incompatible job families using ant colony optimization. In Proceedings of the 2006 international conference on automation science and engineering (pp. 507–512).

    Chapter  Google Scholar 

  • Sze, S. M. (2001). Semiconductor devices: physics and technology (2nd ed.). New York: Wiley.

    Google Scholar 

  • Tangudu, S., & Kurz, M. E. (2006). A branch-and-bound algorithm to minimize total weighted tardiness on a parallel-batch processing machine with ready times and incompatible job families. Production Planning and Control, 17(7), 728–741.

    Article  Google Scholar 

  • Toba, H. (2000). Segment-based approach for real-time reactive rescheduling for automatic manufacturing control. IEEE Transactions on Semiconductor Manufacturing, 13(3), 264–272.

    Article  Google Scholar 

  • Upasani, A. A., Uzsoy, R., & Sourirajan, K. (2006). A problem reduction approach for scheduling semiconductor wafer fabrication facilities. IEEE Transactions on Semiconductor Manufacturing, 19(2), 216–225.

    Article  Google Scholar 

  • Upasani, A. A., & Uzsoy, R. (2008). Integrating a decomposition procedure with problem reduction for factory scheduling with disruptions: a simulation study. International Journal of Production Research, 46(21), 5883–5905.

    Article  Google Scholar 

  • Uzsoy, R., Martin-Vega, L. A., Lee, C. Y., & Leonard, P. A. (1991). Production scheduling algorithms for a semiconductor test facility. IEEE Transactions on Semiconductor Manufacturing, 4(4), 270–280.

    Article  Google Scholar 

  • Uzsoy, R., Lee, C. Y., & Martin-Vega, L. (1992). A review of production planning and scheduling models in the semiconductor industry, part I: system characteristics, performance evaluation, and production planning. IIE Transactions, 24, 47–60.

    Article  Google Scholar 

  • Uzsoy, R., Lee, C. Y., & Martin-Vega, L. (1994). A review of production planning and scheduling models in the semiconductor industry, part II: shop floor control. IIE Transactions, 26, 44–55.

    Article  Google Scholar 

  • Uzsoy, R., & Wang, C.-S. (2000). Performance of decomposition procedures for job-shop scheduling problems with bottleneck machines. International Journal of Production Research, 38, 1271–1286.

    Article  Google Scholar 

  • Wang, C. S., & Uzsoy, R. (2002). A genetic algorithm to minimize maximum lateness on a batch processing machine. Computers and Operations Research, 29, 1621–1640.

    Article  Google Scholar 

  • Weigert, G., Klemmt, A., & Horn, S. (2010). Design and validation of heuristic algorithms for simulation-based scheduling of a semiconductor back-end facility. International Journal of Production Research, 7(8), 2165–2184.

    Google Scholar 

  • Wein, L. (1988). Scheduling semiconductor wafer fabrication. IEEE Transactions on Semiconductor Manufacturing, 1, 115–130.

    Article  Google Scholar 

  • Yeung, T. G., & Mason, S. J. (2006). Using real options analysis to value reoptimization options in the shifting bottleneck heuristic. Naval Research Logistics, 53(4), 285–297.

    Article  Google Scholar 

  • Yim, S. J., & Lee, D. Y. (1999). Scheduling cluster tools in wafer fabrication using candidate list and simulated annealing. Journal of Intelligent Manufacturing, 10, 531–540.

    Article  Google Scholar 

  • Yoon, H. J., & Shen, W. (2008). A multiagent-based decision-making system for semiconductor wafer fabrication with hard temporal constraints. IEEE Transactions on Semiconductor Manufacturing, 21(1), 83–91.

    Article  Google Scholar 

  • Yugma, C., Dauzere-Peres, S., Derreumaux, A., & Sibille, O. (2008). A batch optimization software for diffusion area scheduling in semiconductor manufacturing. In Advanced semiconductor manufacturing conference 2008 (ASMC 2008) (pp. 327–332).

    Chapter  Google Scholar 

  • Yurtsever, T., Kutanoglu, E., & Johns, J. (2009, to appear). Heuristic based scheduling system for diffusion in semiconductor manufacturing. In: Proceedings of the 2009 winter simulation conference.

  • Zoghby, J., Barnes, J. W., & Hasenbein, J. J. (2005). Modeling the reentrant job shop scheduling problem with set-ups for metaheuristic searches. European Journal of Operational Research, 167, 336–348.

    Article  Google Scholar 

  • Zweben, M., & Fox, M. S. (1994). Intelligent scheduling. San Francisco: Morgan Kaufman.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Mönch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mönch, L., Fowler, J.W., Dauzère-Pérès, S. et al. A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations. J Sched 14, 583–599 (2011). https://doi.org/10.1007/s10951-010-0222-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-010-0222-9

Keywords

Navigation