Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Outer Space Approach to Tackle Generalized Affine Fractional Program Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper aims to globally solve a generalized affine fractional program problem (GAFPP). Firstly, by introducing some outer space variables and performing equivalent transformations, we can derive the equivalence problem (EP) of the GAFPP. Secondly, by constructing a novel linear relaxation method, we can deduce the affine relaxation problem (ARP) of the EP. Next, by solving the ARP to compute the lower bound, we propose a new outer space branch-and-bound algorithm for tackling the GAFPP. Then, the global convergence of the algorithm is proved, and the computational complexity of the algorithm in the worst case is analyzed. Finally, numerical experimental results are reported to illustrate the effectiveness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data supporting this study can be obtained based on reasonable requests from the corresponding author.

References

  1. Barros, A.I., Frenk, J.B.G.: Generalized fractional programming and cutting plane algorithms. J. Optim. Theory Appl. 87, 103–120 (1995)

    MathSciNet  Google Scholar 

  2. Benson, H.P.: A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios problem. Eur. J. Oper. Res. 182(2), 597–611 (2007)

    MathSciNet  Google Scholar 

  3. Charnes, A., Cooper, W.: Programming with linear fractional functionals. Nav. Res. Log. Q. 9(3–4), 181–186 (1962)

    MathSciNet  Google Scholar 

  4. Choi, C., Bricker, D.L.: Effectiveness of a geometric programming algorithm for optimization of machining economics models. Comput. Oper. Res. 23(10), 957–961 (1996)

    Google Scholar 

  5. Das, K., Roy, T.K., Maiti, M.: Multi-item inventory model with under imprecise objective and restrictions: a geometric programming approach. Prod. Plan. Control 11(8), 781–788 (2000)

    Google Scholar 

  6. Depetrini, D., Locatelli, M.: Approximation algorithm for linear fractional-multiplicative problems. Math. Program. 128, 437–443 (2011)

    MathSciNet  Google Scholar 

  7. Gao, Y., Xu, C., Wang, Y., Zhang, L.: A new two-level linear relaxed bound method for geometric programming problems. Appl. Math. Comput. 164(1), 117–131 (2005)

    MathSciNet  Google Scholar 

  8. Gao, Y., Xu, C., Yan, Y.: An outcome-space finite algorithm for solving linear multiplicative programming. Appl. Math. Comput. 179(2), 494–505 (2006)

    MathSciNet  Google Scholar 

  9. Jiao, H.: A branch and bound algorithm for globally solving a class of nonconvex programming problems. Nonlinear Anal.-Theor. 70(2), 1113–1123 (2009)

    MathSciNet  Google Scholar 

  10. Jiao, H., Guo, Y., Shen, P.: Global optimization of generalized linear fractional programming with nonlinear constraints. Appl. Math. Comput. 183(2), 717–728 (2006)

    MathSciNet  Google Scholar 

  11. Jiao, H., Li, B.: Solving min-max linear fractional programs based on image space branch-and-bound scheme. Chaos Soliton Fract. 164, 112682 (2022)

    MathSciNet  Google Scholar 

  12. Jiao, H., Liu, S.: Global optimization algorithm for a generalized linear multiplicative programming. J. Appl. Math. Comput. 40, 551–568 (2012)

    MathSciNet  Google Scholar 

  13. Jiao, H., Liu, S.: Range division and compression algorithm for quadratically constrained sum of quadratic ratios. Comput. Appl. Math. 36, 225–247 (2017)

    MathSciNet  Google Scholar 

  14. Jiao, H.W., Liu, S.Y.: A practicable branch and bound algorithm for sum of linear ratios problem. Eur. J. Oper. Res. 243(3), 723–730 (2015)

    MathSciNet  Google Scholar 

  15. Jiao, H.W., Liu, S.Y., Zhao, Y.F.: Effective algorithm for solving the generalized linear multiplicative problem with generalized polynomial constraints. Appl. Math. Model. 39(23–24), 7568–7582 (2015)

    MathSciNet  Google Scholar 

  16. Jiao, H., Ma, J.: An efficient algorithm and complexity result for solving the sum of general affine ratios problem. Chaos Soliton Fract. 164, 112701 (2022)

    MathSciNet  Google Scholar 

  17. Jiao, H., Ma, J., Shang, Y.: Image space branch-and-bound algorithm for globally solving minimax linear fractional programming problem. Pac. J. Optim. 18(1), 195–212 (2022)

    MathSciNet  Google Scholar 

  18. Jiao, H., Ma, J., Shen, P., Qiu, Y.: Effective algorithm and computational complexity for solving sum of linear ratios problem. J. Ind. Manag. Optim. 19(6), 4410–4427 (2023)

    MathSciNet  Google Scholar 

  19. Jiao, H., Shang, Y.: Two-level linear relaxation method for Generalized linear fractional programming. J. Oper. Res. Soc. China 11(3), 569–594 (2023)

    MathSciNet  Google Scholar 

  20. Jiao, H., Shang, Y., Chen, R.: A potential practical algorithm for minimizing the sum of affine fractional functions. Optimization 72(6), 1577–1607 (2023)

    MathSciNet  Google Scholar 

  21. Jiao, H., Shang, Y., Wang, W.: Solving generalized polynomial problem by using new affine relaxed technique. Int. J. Comput. Math. 99(2), 309–331 (2022)

    MathSciNet  Google Scholar 

  22. Jiao, H., Wang, W., Shang, Y.: Outer space branch-reduction-bound algorithm for solving generalized affine multiplicative problem. J. Comput. Appl. Math. 419, 114784 (2023)

    MathSciNet  Google Scholar 

  23. Jiao, H., Wang, W., Yin, J., Shang, Y.: Image space branch-reduction-bound algorithm for globally minimizing a class of multiplicative problems. RAIRO-Oper. Res. 56(3), 1533–1552 (2022)

    MathSciNet  Google Scholar 

  24. Lin, J.Y., Chen, H.J., Sheu, R.L.: Augmented lagrange primal-dual approach for generalized fractional programming problems. J. Ind. Manag. Optim. 9(4), 723–741 (2013)

    MathSciNet  Google Scholar 

  25. Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21(4), 351–369 (1997)

    Google Scholar 

  26. Nesterov, Y.E., Nemirovskii, A.S.: An interior-point method for generalized linear-fractional programming. Math. Program. 69, 177–204 (1995)

    MathSciNet  Google Scholar 

  27. Ozkok, B.A.: An iterative algorithm to solve a linear fractional programming problem. Comput. Ind. Eng. 140, 106234 (2020)

    Google Scholar 

  28. Pei, Y., Zhu, D.: Global optimization method for maximizing the sum of difference of convex functions ratios over nonconvex region. J. Appl. Math. Comput. 41(1–2), 153–169 (2013)

    MathSciNet  Google Scholar 

  29. Ryoo, H.S., Sahinidis, N.V.: Global optimization of multiplicative programs. J. Glob. Optim. 26, 387–418 (2003)

    MathSciNet  Google Scholar 

  30. Shen, P.: Linearization method of global optimization for generalized geometric programming. Appl. Math. Comput. 162(1), 353–370 (2005)

    MathSciNet  Google Scholar 

  31. Shen, P., Bai, X., Li, W.: A new accelerating method for globally solving a class of nonconvex programming problems. Nonlinear Anal.-Theor. 71(7–8), 2866–2876 (2009)

    MathSciNet  Google Scholar 

  32. Shen, P., Huang, B., Wang, L.: Range division and linearization algorithm for a class of linear ratios optimization problems. J. Comput. Appl. Math. 350, 324–342 (2019)

    MathSciNet  Google Scholar 

  33. Shen, P., Jiao, H.: A new rectangle branch-and-pruning approach for generalized geometric programming. Appl. Math. Comput. 183(2), 1027–1038 (2006)

    MathSciNet  Google Scholar 

  34. Shen, P., Jiao, H.: Linearization method for a class of multiplicative programming with exponent. Appl. Math. Comput. 183(1), 328–336 (2006)

    MathSciNet  Google Scholar 

  35. Shen, P., Lu, T.: Regional division and reduction algorithm for minimizing the sum of linear fractional functions. J. Inequal. Appl. 2018(1), 1–19 (2018)

    MathSciNet  Google Scholar 

  36. Shen, P., Zhang, K.: Global optimization of signomial geometric programming using linear relaxation. Appl. Math. Comput. 150(1), 99–114 (2004)

    MathSciNet  Google Scholar 

  37. Shen, P., Wang, C.: Global optimization for sum of generalized fractional functions. J. Comput. Appl. Math. 214(1), 1–12 (2008)

    MathSciNet  Google Scholar 

  38. Shen, P., Zhang, T., Wang, C.: Solving a class of generalized fractional programming problems using the feasibility of linear programs. J. Inequal. Appl. 2017(1), 1–16 (2017)

    MathSciNet  Google Scholar 

  39. Stancu-Minasian, I.M.: Fractional Programming: Theory, Methods and Applications. Kluwer, Dordrecht (1997)

    Google Scholar 

  40. Thi Hoai Phuong, N., Tuy, H.: A unified monotonic approach to generalized linear fractional programming. J. Glob. Optim. 26, 229–259 (2003)

    MathSciNet  Google Scholar 

  41. Wang, C., Deng, Y., Shen, P.: A novel convex relaxation-strategy-based algorithm for solving linear multiplicative problems. J. Comput. Appl. Math. 407, 114080 (2022)

    MathSciNet  Google Scholar 

  42. Wang, Y., Liang, Z.: A deterministic global optimization algorithm for generalized geometric programming. Appl. Math. Comput. 168(1), 722–737 (2005)

    MathSciNet  Google Scholar 

  43. Watanabe, H.: Bond portfolio optimization problems and their applications to index tracking: a partial optimization approach. J. Oper. Res. Soc. Jpn. 39(3), 295–306 (1996)

    MathSciNet  Google Scholar 

  44. Wang, C., Shen, P.: A global optimization algorithm for linear fractional programming. Appl. Math. Comput. 204(1), 281–287 (2008)

    MathSciNet  Google Scholar 

  45. Wang, Y., Shen, P., Liang, Z.: A branch-and-bound algorithm to globally solve the sum of several linear ratios. Appl. Math. Comput. 168(1), 89–101 (2005)

    MathSciNet  Google Scholar 

  46. Zhang, B., Gao, Y., Liu, X., Huang, X.: A new deterministic global computing algorithm for solving a kind of linear fractional programming. Optimization 72(6), 1485–1513 (2023)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for their helpful suggestions and comments. This paper is supported by the National Natural Science Foundation of China (11871196, 12071133, 12071112), China Postdoctoral Science Foundation (2017M622340), the Key Scientific and Technological Research Projects in Henan Province (232102211085, 202102210147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Jiao.

Additional information

Communicated by Francesco Zirilli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Example A1 (Shen et al. [32])

$$\begin{aligned} {\left\{ \begin{array}{ll} \min &{} \dfrac{-x_{1}+2 x_{2}+2}{3 x_{1}-4 x_{2}+5} \times \dfrac{4 x_{1}-3 x_{2}+4}{-2 x_{1}+x_{2}+3}, \\ \text{ s.t. } &{} x_{1}+x_{2} \leqslant 1.5, \\ &{} x_{1} - x_{2} \leqslant 0, \\ &{} 0 \leqslant x_{1} \leqslant 1, \ 0 \leqslant x_{2} \leqslant 1. \end{array}\right. } \end{aligned}$$

Example A2 (Jiao [9])

$$\begin{aligned} {\left\{ \begin{array}{ll} \max &{} \dfrac{3 x_{1}+5 x_{2}+3 x_{3}+50}{3 x_{1}+4 x_{2} + 5 x_{3}+50}+\dfrac{3 x_{1} + 4 x_{2}+50}{4 x_{1}+ 3 x_{2} + 2 x_{3}+50}+\dfrac{4 x_{1}+2 x_{2}+4 x_{3}+50}{5 x_{1}+4 x_{2}+3 x_{3}+50}, \\ \text { s.t. } &{} 6 x_{1}+3 x_{2}+3 x_{3} \leqslant 10, \\ &{} 10 x_{1}+3 x_{2}+8 x_{3} \leqslant 10, \\ &{} 0 \leqslant x_{1} \leqslant 1, \ 0 \leqslant x_{2} \leqslant 3.333333, \ 0 \leqslant x_{3} \leqslant 1. \end{array}\right. } \end{aligned}$$

Example A3 (Jiao et al. [10, 15])

$$\begin{aligned} {\left\{ \begin{array}{ll} \min &{} \left( \dfrac{x_{1}+x_{2}+1}{x_{1} + x_{2} + 2} \right) ^{1.5} \times \left( \dfrac{x_{1}+x_{2}+3}{x_{1}+x_{2}+4} \right) ^{2.1} \times \left( \dfrac{x_{1}+x_{2}+5}{x_{1}+x_{2}+6} \right) ^{1.2} \times \left( \dfrac{x_{1}+x_{2}+7}{x_{1}+x_{2}+8} \right) ^{1.1}, \\ \text{ s.t. } \ &{} x_{1}=x_{2},\\ &{} 1.0 \leqslant x_{1} \leqslant 2.0, \ 1.0 \leqslant x_{2} \leqslant 2.0. \end{array}\right. } \end{aligned}$$

Example A4 (Pei and Zhu [28])

$$\begin{aligned} {\left\{ \begin{array}{ll} \max &{} \dfrac{3 x_{1}+5 x_{2}+3 x_{3}+50}{3 x_{1}+4 x_{2}+5 x_{3}+50}+\dfrac{3 x_{1}+5 x_{2}+50}{3 x_{1}+ 5 x_{2}+ 3 x_{3}+50}+\dfrac{4 x_{1}+2 x_{2}+4 x_{3}+50}{5 x_{1}+4 x_{2}+3 x_{3}+50}, \\ \text{ s.t. } &{} 6 x_{1}+3 x_{2}+3 x_{3} \leqslant 10, \\ &{} 10 x_{1}+3 x_{2}+8 x_{3} \leqslant 10, \\ &{} x_{1} \geqslant 0, \ x_{2} \geqslant 0, \ x_{3} \geqslant 0. \end{array}\right. } \end{aligned}$$

Example A5 (Pei and Zhu [28])

$$\begin{aligned} {\left\{ \begin{array}{ll} \max &{} \dfrac{4 x_{1} + 3 x_{2} + 3 x_{3}+50}{3 x_{2} + 3 x_{3}+50} + \dfrac{3 x_{1} + 4 x_{2}+50}{4 x_{1}+ 4 x_{2}+ 5 x_{3}+50} + \dfrac{x_{1} + 2 x_{2} + 5 x_{3}+50}{x_{1}+ 5 x_{2} + 5 x_{3}+50} \\ &{} +\dfrac{x_{1} + 2 x_{2} + 4 x_{3}+50}{5 x_{2} + 4 x_{3}+50}, \\ \text{ s.t. } &{} 2 x_{1} + x_{2} + 5 x_{3} \leqslant 10, \\ &{} x_{1} + 6 x_{2} + 3 x_{3} \leqslant 10,\\ &{} 5 x_{1} + 9 x_{2} + 2 x_{3} \leqslant 10, \\ &{} 9 x_{1} + 7 x_{2} + 3 x_{3} \leqslant 10, \\ &{} x_{1} \geqslant 0, \ x_{2} \geqslant 0, \ x_{3} \geqslant 0. \end{array}\right. } \end{aligned}$$

Example A6 (Shen and Lu [35])

$$\begin{aligned} {\left\{ \begin{array}{ll} \min &{} \dfrac{37 x_{1} + 73 x_{2} + 13}{13 x_{1} + 13 x_{2} + 13} + \dfrac{63 x_{1} - 18 x_{2} + 39 }{13 x_{1} + 26x_{2} + 13}, \\ \text { s.t. } &{} 5 x_{1}- 3 x_{2} = 3, \\ &{} 1.5 \leqslant x_{1} \leqslant 3. \end{array}\right. } \end{aligned}$$

Example A7 (Wang and Shen [44])

$$\begin{aligned} {\left\{ \begin{array}{ll} \min &{} \dfrac{4 x_{1} + 3 x_{2} + 3 x_{3}+50}{3 x_{2} + 3 x_{3}+50} + \dfrac{3 x_{1} + 4 x_{3}+50}{4 x_{1}+ 4 x_{2}+ 5 x_{3}+50} + \dfrac{x_{1} + 2 x_{2} + 4 x_{3}+50}{x_{1}+ 5 x_{2} + 5 x_{3}+50} \\ &{} +\dfrac{x_{1} + 2 x_{2} + 4 x_{3}+50}{5 x_{2} + 4 x_{3}+50}, \\ \text{ s.t. } &{} 2 x_{1} + x_{2} + 5 x_{3} \leqslant 10, \\ &{} x_{1} + 6 x_{2} + 2 x_{3} \leqslant 10,\\ &{} 9 x_{1} + 7 x_{2} + 3 x_{3} \geqslant 10, \\ &{} x_{1} \geqslant 0, \ x_{2} \geqslant 0, \ x_{3} \geqslant 0. \end{array}\right. } \end{aligned}$$

Example A8 (Shen et al. [32])

$$\begin{aligned} {\left\{ \begin{array}{ll} \min &{} \prod \limits _{i=1}^{6} \dfrac{\left\langle c_{i}, x\right\rangle + s_{i}}{\left\langle d_{i}, x\right\rangle + r_{i}}, \\ \text { s.t. } &{} A x \leqslant b, x \geqslant 0, \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned}{} & {} \begin{array}{rrrrrrrrrrrrr} c_{1}=&{} (-0.2 &{} -0.7 &{} -0.1 &{} 0.4 &{} 0.0 &{} 0.8 &{} 0.1 &{} -0.8 &{} -0.2 &{} 0.0 &{} 0.1 &{} 0.4), \\ d_{1}=&{} (0.2 &{} 0.5 &{} -0.6 &{} 0.1 &{} 0.6 &{} 0.4 &{} -0.4 &{} -0.3 &{} 0.7 &{} 0.5 &{} 0.4 &{} -0.1), \\ c_{2}=&{} (-0.1 &{} 0.1 &{} -0.4 &{} -0.1 &{} -0.1 &{} 0.4 &{} 0.2 &{} 0.5 &{} 0.3 &{} -0.4 &{} -0.3 &{} 0.3), \\ d_{2}=&{} (-0.3 &{} -0.2 &{} -0.7 &{} 0.1 &{} 0.2 &{} -0.2 &{} -0.5 &{} 0.4 &{} 0.3 &{} 0.0 &{} 0.6 &{} -0.5), \\ c_{3}=&{} (0.8 &{} 0.0 &{} -0.1 &{} 0.4 &{} 0.2 &{} 0.1 &{} -0.5 &{} 0.0 &{} 0.5 &{} 0.6 &{} -0.3 &{} -0.4), \\ d_{3}=&{} (0.1 &{} 0.0 &{} 0.0 &{} 0.3 &{} 0.2 &{} 0.7 &{} 0.4 &{} 0.2 &{} -0.1 &{} -0.5 &{} 0.6 &{} -0.1), \\ c_{4}=&{} (0.6 &{} 0.2 &{} 0.2 &{} -0.3 &{} 0.5 &{} 0.4 &{} 0.1 &{} 0.6 &{} -0.3 &{} 0.3 &{} 0.4 &{} 0.3), \\ d_{4}=&{} (-0.3 &{} 0.0 &{} 0.0 &{} -0.5 &{} -0.1 &{} 0.2 &{} 0.6 &{} -0.6 &{} 0.1 &{} -0.2 &{} 0.8 &{} -0.3), \\ c_{5}=&{} (-0.3 &{} -0.3 &{} 0.5 &{} 0.1 &{} 0.2 &{} -0.5 &{} 0.1 &{} 0.2 &{} 0.0 &{} 0.6 &{} 0.3 &{} -0.2), \\ d_{5}=&{} (0.3 &{} 0.0 &{} 0.3 &{} 0.0 &{} -0.8 &{} -0.3 &{} 0.3 &{} -0.9 &{} -0.1 &{} -0.6 &{} -0.1 &{} 0.2), \\ c_{6}=&{} (0.2 &{} -0.1 &{} 0.0 &{} 0.0 &{} -0.2 &{} -0.4 &{} 0.0 &{} -0.6 &{} 0.8 &{} -0.2 &{} 0.0 &{} -0.1), \\ d_{6}=&{} (0.0 &{} 0.6 &{} 0.0 &{} 0.1 &{} 0.0 &{} -0.2 &{} 0.0 &{} -0.5 &{} 0.2 &{} -0.3 &{} 0.3 &{} 0.1), \end{array} \end{aligned}$$
$$\begin{aligned}{} & {} \begin{aligned} A=\left[ \begin{array}{rrrrrrrrrrrr} 1.9 &{} 0.0 &{} -0.2 &{} -1.5 &{} 1.8 &{} 0.9 &{} -1.0 &{} 4.5 &{} 4.5 &{} -3.5 &{} -1.8 &{} -4.8 \\ 2.9 &{} 3.7 &{} -4.8 &{} -1.9 &{} 1.8 &{} -3.7 &{} 1.8 &{} 2.5 &{} -2.9 &{} 1.9 &{} -3 &{} 3.2 \\ 3.3 &{} 2.4 &{} 3.3 &{} 4.8 &{} -0.3 &{} 3.9 &{} 0.8 &{} -1.7 &{} 2.0 &{} -0.3 &{} -1.8 &{} 2.2 \\ -4.3 &{} 1.8 &{} 2.1 &{} -4.5 &{} -0.5 &{} 2.4 &{} 1.4 &{} -0.3 &{} -2.0 &{} -2.8 &{} 0.4 &{} 4.5 \\ 1.5 &{} -0.3 &{} 0.4 &{} 1.2 &{} 1.1 &{} 1.9 &{} 1.5 &{} -1.2 &{} -3.3 &{} 4.4 &{} 3.2 &{} -4.3 \\ -3.2 &{} 2.4 &{} -4.5 &{} -1.0 &{} -2.7 &{} 3.7 &{} -0.1 &{} 3.9 &{} -1.9 &{} 3.2 &{} 2.1 &{} 1.3 \\ 0.9 &{} 0.5 &{} 4.0 &{} -1.5 &{} 1.2 &{} -1.5 &{} 1.2 &{} -3.7 &{} -0.1 &{} 0.0 &{} -2.4 &{} -4.1 \\ -4.1 &{} -4.5 &{} 2.2 &{} -3.1 &{} 4.4 &{} 4.8 &{} -3.4 &{} 2.2 &{} -2.1 &{} 2.3 &{} 2.6 &{} -1.4 \\ 2.4 &{} 2.3 &{} 4.7 &{} -1.7 &{} -1.6 &{} 3.8 &{} -4.0 &{} 1.3 &{} -0.4 &{} -0.4 &{} 2.9 &{} 1.2 \\ 0.0 &{} -3.2 &{} -0.2 &{} 2.0 &{} -2.9 &{} 2.7 &{} 3.1 &{} 2.9 &{} -2.6 &{} -4.3 &{} 0.2 &{} 4.6 \\ -1.3 &{} -0.9 &{} 3.4 &{} 3.9 &{} 4.9 &{} 2.3 &{} -3.0 &{} -1.5 &{} 2.5 &{} -1.7 &{} 1.7 &{} -2.9 \\ 3.5 &{} 3.4 &{} 2.5 &{} -0.4 &{} -4.5 &{} 2.8 &{} -1.7 &{} 2.1 &{} -2.9 &{} -4.7 &{} 1.3 &{} 4.5 \\ 1.9 &{} -0.9 &{} -3.3 &{} -2.3 &{} 1.6 &{} -0.5 &{} -4.9 &{} 3.0 &{} -4.9 &{} 3.6 &{} -3.7 &{} 2.2 \\ -1.4 &{} 3.5 &{} -2.8 &{} -1.2 &{} -4.7 &{} -3.2 &{} 2.2 &{} -4.0 &{} 2.8 &{} 3.3 &{} 4.4 &{} -3.1 \\ -2.1 &{} 2.6 &{} -3.9 &{} 1.0 &{} 2.3 &{} 1.8 &{} 4.2 &{} 1.8 &{} 2.7 &{} 0.9 &{} 3.3 &{} 1.7 \end{array} \right] , \end{aligned} \\{} & {} s=(21,16.3, 3.7, -1.8, 5, 12.7)^{\top }, r=(13.3,16, 16.7, 21.5, 18.7, 19.2)^{\top },\\{} & {} b=(-20.1,-1.0, 82.6, 14.6, 37.7, 40.7,\\{} & {} \qquad -23, 47.4, 83.0, 9.9, 33.7, 49.1, 14.0,-45.6, 30.4)^{\top }. \end{aligned}$$

Example A9 (Shen and Jiao [34])

$$\begin{aligned} {\left\{ \begin{array}{ll} \min &{} 169 \times \dfrac{x_{1} + x_{2}+1}{37 x_{1} + 73 x_{2}+13 } \times \dfrac{x_{1} + 2 x_{2} + 1}{63 x_{1} - 18 x_{2} + 39}, \\ \text { s.t. } &{} 5x_{1} - 3 x_{2} \leqslant 3, \\ &{} 1.5 \leqslant x_{1} \leqslant 3, \ 2 \leqslant x_{2} \leqslant 3.5. \end{array}\right. } \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, H., Li, B. & Shang, Y. An Outer Space Approach to Tackle Generalized Affine Fractional Program Problems. J Optim Theory Appl 201, 1–35 (2024). https://doi.org/10.1007/s10957-023-02368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02368-0

Keywords

Mathematics Subject Classification

Navigation