Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Optimal Control of Coffee Berry Borers: Synergy Between Bio-insecticide and Traps

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The coffee berry borer (CBB), Hypothenemus hampei, is the most destructive insect pest affecting coffee plantations in most coffee-producing countries, hence causing major economic losses worldwide. The cryptic life cycle of CBB inside coffee berries makes their control extremely difficult. To tackle this problem, we use a dynamical model describing the plant–pest interactions during a cropping season, which includes a berry age structure to account for CBB preference for mature berries. We introduce two environmentally friendly control methods, consisting in applying a bio-insecticide to reduce berry infestation and in trapping the colonising CBB. Our objective is to maximise the profit generated by the harvest of healthy coffee berries, while minimising the CBB population for the next cropping season. The existence of an optimal control strategy is provided, and necessary optimality conditions are established. Finally, the optimal control problem is solved numerically and simulations are provided. They show that combining the two control methods is a cost-effective strategy to protect coffee berries from CBB infestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ainseba, B., Feng, Z., Iannelli, M., Milner, F.: Control strategies for TB epidemics. SIAM. J. Appl. Math. 77(1), 82–107 (2017). https://doi.org/10.1137/15M1048719

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainseba, B., Iannelli, M.: Optimal screening in structured SIR epidemics. Math. Model. Nat. Phenom. (2012). https://doi.org/10.1051/mmnp/20127302

    Article  MathSciNet  MATH  Google Scholar 

  3. Anita, S.: Analysis and Control of Age-Dependent Population Dynamics. Kluwer, Boston (2000)

    Book  MATH  Google Scholar 

  4. Aniţa, L.I., Aniţa, S., Moroşanu, C.: Optimal strategies to diminish a pest population via bilinear controls. Appl. Math. Lett. 40, 7–12 (2015). https://doi.org/10.1016/j.aml.2014.09.003

    Article  MathSciNet  MATH  Google Scholar 

  5. Aristizábal, L.F., Bustillo, A.E., Arthurs, S.P.: Integrated pest management of coffee berry borer: strategies from Latin America that could be useful for coffee farmers in Hawaii. Insects 7(1), 6 (2016). https://doi.org/10.3390/insects7010006

    Article  Google Scholar 

  6. Behncke, H.: Optimal control of deterministic epidemics. Optim. Control Appl. Methods 21, 269–285 (2000). https://doi.org/10.1002/oca.678

    Article  MathSciNet  MATH  Google Scholar 

  7. Brun, L.O., Marcillaud, C., Gaudichon, V., Suckling, D.M.: Cross resistance between insecticides in coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae) from New Caledonia. Bull. Entomol. Res. 84(2), 175–178 (1994). https://doi.org/10.1017/S0007485300039651

    Article  Google Scholar 

  8. Damon, A.: A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bull. Entomol. Res. 90(6), 453–465 (2000). https://doi.org/10.1017/S0007485300000584

    Article  Google Scholar 

  9. Dufour, B.P., Frérot, B.: Optimization of coffee berry borer, Hypothenemus hampei Ferrari (Col. Scolytidae), mass trapping with an attractant mixture. J. Appl. Entomol. 132(7), 591–600 (2008). https://doi.org/10.1111/j.1439-0418.2008.01291.x

    Article  Google Scholar 

  10. Feichtinger, G., Tragler, G., Veliov, V.M.: Optimality conditions for age-structured control systems. J. Math. Anal. Appl. 288(1), 47–68 (2003). https://doi.org/10.1016/j.jmaa.2003.07.001

    Article  MathSciNet  MATH  Google Scholar 

  11. Feichtinger, G., Veliov, V.M., Tsachev, T.: Maximum principle for age and duration structured systems: a tool for optimal prevention and treatment of HIV. Math. Popul. Stud. 11(1), 3–28 (2004). https://doi.org/10.1080/08898480490422301

    Article  MathSciNet  MATH  Google Scholar 

  12. Fister, K.R., Lenhart, S.: Optimal control of a competitive system with age-structure. J. Math. Anal. Appl. 291(2), 526–537 (2004). https://doi.org/10.1016/j.jmaa.2003.11.031

    Article  MathSciNet  MATH  Google Scholar 

  13. Fotso, Y., Grognard, F., Tsanou, B., Touzeau, S.: Modelling and control of coffee berry borer infestation. In: 14th African Conference on Research in Computer Science and Applied Mathematics, pp. 54–63. Stellenbosch, South Africa (2018). https://www.cari-info.org/South-africa-2018/

  14. Fotso Fotso, Y., Touzeau, S., Tsanou, B., Bowong, S., Grognard, F.: Modelling and optimal strategy to control coffee berry borer. Math. Methods Appl. Sci. 44(18), 14569–14592 (2021). https://doi.org/10.1002/mma.7726

    Article  MathSciNet  MATH  Google Scholar 

  15. Fotso Fotso, Y., Touzeau, S., Tsanou, B., Grognard, F., Bowong, S.: Mathematical modelling of a pest in an age-structured crop model: the coffee berry borer case. Appl. Math. Model. 110, 193–206 (2022). https://doi.org/10.1016/j.apm.2022.05.042

    Article  MathSciNet  MATH  Google Scholar 

  16. Greco, E., Wright, M.: Efficacy of Beauveria bassiana applications on coffee berry borer across an elevation gradient in Hawaii. Biocontrol. Sci. Technol. (2018). https://doi.org/10.1080/09583157.2018.1493088

    Article  Google Scholar 

  17. Gutierrez, A.P., Villacorta, A., Cure, J.R., Ellis, C.K.: Tritrophic analysis of the coffee (Coffea arabica)—coffee berry borer [Hypothenemus hampei (Ferrari)] - parasitoid system. An. Soc. Entomol. Bras. 27(3), 357–385 (1998). https://doi.org/10.1590/S0301-80591998000300005

    Article  Google Scholar 

  18. Hethcote, H.W.: Optimal ages of vaccination for measles. Math. Biosci. 89(1), 29–52 (1988). https://doi.org/10.1016/0025-5564(88)90111-3

    Article  MathSciNet  MATH  Google Scholar 

  19. Jaramillo, J., Borgemeister, C., Baker, P.: Coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): searching for sustainable control strategies. Bull. Entomol. Res. 96(3), 223–233 (2006). https://doi.org/10.1079/BER2006434

    Article  Google Scholar 

  20. Johnson, M.A., Ruiz-Diaz, C.P., Manoukis, N.C., Verle Rodrigues, J.C.: Coffee berry borer (Hypothenemus hampei), a global pest of coffee: perspectives from historical and recent invasions, and future priorities. Insects 11(12), 882 (2020). https://doi.org/10.3390/insects11120882

    Article  Google Scholar 

  21. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Mathematical and Computational Biology Series, Chapman & Hall, London (2007)

    Book  MATH  Google Scholar 

  22. Luo, Z., He, Z.R., Li, W.T.: Optimal birth control for predator-prey system of three species with age-structure. Appl. Math. Comput. 155(3), 665–685 (2004). https://doi.org/10.1016/S0096-3003(03)00808-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Messing, R.: The coffee berry borer (Hypothenemus hampei) invades Hawaii: preliminary investigations on trap response and alternate hosts. Insects 3(3), 640–652 (2012). https://doi.org/10.3390/insects3030640

    Article  Google Scholar 

  24. Park, E.J., Iannelli, M., Kim, M.Y., Anita, S.: Optimal harvesting for periodic age-dependent population dynamics. SIAM J. Appl. Math. 58, 1648–1666 (1999). https://doi.org/10.1137/S0036139996301180

    Article  MathSciNet  MATH  Google Scholar 

  25. Picart, D., Ainseba, B., Milner, F.: Optimal control problem on insect pest populations. Appl. Math. Lett. 24(7), 1160–1164 (2011). https://doi.org/10.1016/j.aml.2011.01.043

    Article  MathSciNet  MATH  Google Scholar 

  26. Picart, D., Milner, F.: Optimal control in a multistage physiologically structured insect population model. Appl. Math. Comput. 247, 573–588 (2014). https://doi.org/10.1016/j.amc.2014.09.014

    Article  MathSciNet  MATH  Google Scholar 

  27. Rodríguez, D., Cure, J.R., Gutierrez, A.P., Cotes, J.M., Cantor, F.: A coffee agroecosystem model: II dynamics of coffee berry borer. Ecol. Model. 248, 203–214 (2013). https://doi.org/10.1016/j.ecolmodel.2012.09.015

    Article  Google Scholar 

  28. USDA: Coffee: World markets and trade (2020). https://www.fas.usda.gov/data/coffee-world-markets-and-trade

  29. Vega, F., Infante, F., Castillo, A., Jaramillo, J.: The coffee berry borer Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae): a short review, with recent findings and future research directions. Terr. Arthropod. Rev. 2, 129–147 (2009). https://doi.org/10.1163/187498209X12525675906031

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by EPITAG, an Inria associated team part of the LIRIMA (https://team.inria.fr/epitag/), as well as the Collège doctoral régional de l’Afrique Centrale et des Grands Lacs “Mathématiques, Informatique, Biosciences et Géosciences de l’Environnement” (AUF, French Embassy in Cameroon, IRD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Fotso Fotso.

Additional information

Communicated by Vincenzo Capasso.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Breakdown of the Optimal Control Impact

Breakdown of the Optimal Control Impact

Figures 5 and  are obtained by numerically solving optimal control Problem 3.1 to obtain the optimal control pair \((u^{\star },v^{\star })\), but then applying only one of the two controls and setting the other one to zero to integrate system (3). We hence observe the impact of the bio-insecticide (\(u^{\star }\)) alone and the traps (\(v^{\star }\)) alone on the crop–pest dynamics.

Fig. 5
figure 5

ac Simulation of system (3 when only applying control \(u^{\star }\) (\(v=0\), plain magenta curves) or control \(v^{\star }\) (\(u=0\), plain orange curves) from optimal control pair \((u^{\star },v^{\star })\), without controls (\(u=v=0\), dashed blue curves) and without pest (\(y(0)=z(0)=0\), dash-dotted black curve). d Evolution of controls \(u^{\star }\) representing the bio-insecticide and \(v^{\star }\) representing traps. The parameter values are given in Table 1. Zero initial conditions are set, except for colonising CBB: \(y(0)=10^{4}\) females

Fig. 6
figure 6

Age distribution of the healthy coffee berries and their price at the end of the simulation (\(t=t_f\)) with optimal control pair \((u^{\star },v^{\star })\) (plain red curves), when only biopesticide control \(u^{\star }\) (\(v=0\), plain magenta curves) or trap control \(v^{\star }\) (\(u=0\), plain orange curves) is applied, without control (\(u=v=0\), dashed blue curves) and without pest (\(y(0)=z(0)=0\), dash-dotted black curves). Cases without control and with constant infestation rates \(\beta \) are also represented (blue-shaded areas delimited by \(\beta _{\min }\) and \(\beta _{\max }=\beta _{\min }+\beta _a\), plain blue curves for mean value \({\bar{\beta }}\)). The parameter values are given in Table 1. Zero initial conditions are set, except for colonising CBB: \(y(0)=10^{4}\) females

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotso Fotso, Y., Touzeau, S., Grognard, F. et al. Optimal Control of Coffee Berry Borers: Synergy Between Bio-insecticide and Traps. J Optim Theory Appl 196, 882–899 (2023). https://doi.org/10.1007/s10957-022-02151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02151-7

Keywords

Mathematics Subject Classification

Navigation