Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Priori Error Estimates for State-Constrained Semilinear Parabolic Optimal Control Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the finite element discretization of semilinear parabolic optimization problems subject to pointwise in time constraints on mean values of the state variable. In order to control the feasibility violation induced by the discretization, error estimates for the semilinear partial differential equation are derived. Based upon these estimates, it can be shown that any local minimizer of the semilinear parabolic optimization problems satisfying a weak second-order sufficient condition can be approximated by the discretized problem. Rates for this convergence in terms of temporal and spatial discretization mesh sizes are provided. In contrast to other results in numerical analysis of optimization problems subject to semilinear parabolic equations, the analysis can work with a weak second-order condition, requiring growth of the Lagrangian in critical directions only. The analysis can then be conducted relying solely on the resulting quadratic growth condition of the continuous problem, without the need for similar assumptions on the discrete or time semidiscrete setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Los Reyes, J.C., Merino, P., Rehberg, J., Tröltzsch, F.: Optimality conditions for state-constrained PDE control problems with time-dependent controls. Control Cybern. 37(1), 5–38 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications. Springer, Netherlands (2010)

    MATH  Google Scholar 

  3. Casas, E., de los Reyes, J.C., Tröltzsch, F.: Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19(2), 616–643 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Neitzel, I., Pfefferer, J., Rösch, A.: Finite element discretization of state-constrained elliptic optimal control problems with semilinear state equation. SIAM J. Control Optim. 53(2), 874–904 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. I. Problems without control constraints. SIAM J. Control Optim. 47(3), 1150–1177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. II. Problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ludovici, F., Wollner, W.: A priori error estimates for a finite element discretization of parabolic optimization problems with pointwise constraints in time on mean values of the gradient of the state. SIAM J. Control Optim. 53(2), 745–770 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Leykekhman, D., Vexler, B.: Optimal a priori error estimates of parabolic optimal control problems with pointwise control. SIAM J. Numer. Anal. 51(5), 2797–2821 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Neitzel, I., Vexler, B.: A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120(2), 345–386 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Meidner, D., Rannacher, R., Vexler, B.: A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM J. Control Optim. 49(5), 1961–1997 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leykekhman, D., Meidner, D., Vexler, B.: Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints. Comput. Optim. Appl. 55(3), 769–802 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Neitzel, I., Wollner, W.: A priori \(L^2\)-discretization error estimates for the state in elliptic optimization problems with pointwise inequality state constraints. Numer. Math. 138(2), 273–299 (2018). https://doi.org/10.1007/s00211-017-0906-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Chrysafinos, K., Karatzas, E.N.: Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE’s. Discrete Contin. Dyn. Syst. Ser. B 17(5), 1473–1506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chrysafinos, K.: Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE’s. M2AN Math. Model. Numer. Anal. 44(1), 189–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Casas, E., Mateos, M.: Uniform convergence of the FEM. Applications to state constrained control problems. Comput. Appl. Math. 21(1), 67–100 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Hinze, M., Meyer, C.: Stability of semilinear elliptic optimal control problems with pointwise state constraints. Comput. Optim. Appl. 52(1), 87–114 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leykekhman, D., Vexler, B.: Pointwise best approximation results for Galerkin finite element solutions of parabolic problems. SIAM J. Numer. Anal. 54(3), 1365–1384 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gong, W., Hinze, M.: Error estimates for parabolic optimal control problems with control and state constraints. Comput. Optim. Appl. 56(1), 131–151 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Deckelnick, K., Hinze, M.: Variational discretization of parabolic control problems in the presence of pointwise state constraints. J. Comput. Math. 29(1), 1–15 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Casas, E., Tröltzsch, F.: Second order optimality conditions and their role in PDE control. Jahresber. Dtsch. Math. Ver. 117(1), 3–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bonnans, J., Shapiro, A.: Perturbation Analysis of Optimization Problems, Springer Series Operations Research Financial Engineering, 1st edn. Springer, New York (2010)

    Google Scholar 

  22. Goldberg, H., Tröltzsch, F.: Second-order sufficient optimality conditions for a class of nonlinear parabolic boundary control problems. SIAM J. Control Optim. 31(4), 1007–1025 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Casas, E.: Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35(4), 1297–1327 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krumbiegel, K., Rehberg, J.: Second order sufficient optimality conditions for parabolic optimal control problems with pointwise state constraints. SIAM J. Control Optim. 51(1), 304–331 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bonnans, J.F., Jaisson, P.: Optimal control of a parabolic equation with time-dependent state constraints. SIAM J. Control Optim. 48(7), 4550–4571 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Casas, E., Raymond, J.P., Zidani, H.: Pontryagin’s principle for local solutions of control problems with mixed control-state constraints. SIAM J. Control Optim. 39(4), 1182–1203 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Raymond, J.P., Tröltzsch, F.: Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete Contin. Dyn. Syst. 6(2), 431–450 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ludovici, F.: Numerical analysis of parabolic optimal control problems with restrictions on the state and its first derivative. Ph.D. thesis, Technische Universität Darmstadt (2017). http://tuprints.ulb.tu-darmstadt.de/6781/

  29. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications., Graduate Studies in Mathematics, vol. 112. AMS, Providence (2010)

    MATH  Google Scholar 

  30. Casas, E., Mateos, M.: Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40(5), 1431–1454 (2002). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  31. Thomèe, V.: Galerkin Finite Element Methods for Parabolic Problems, Springer Ser. Comput. Math., 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  32. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Brenner, S.C., Scott, R.L.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  34. Bank, R.E., Yserentant, H.: On the \(H^1\)-stability of the \(L_2\)-projection onto finite element spaces. Numer. Math. 126(2), 361–381 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nochetto, R.H.: Sharp \(L^\infty \)-error estimates for semilinear elliptic problems with free boundaries. Numer. Math. 54(3), 243–255 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Falk, R.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Meyer, C.: Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybern. 37(1), 51–83 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Casas, E., Tröltzsch, F.: Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybern. 31(3), 695–712 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of their former host institutions. To this end, I. Neitzel acknowledges the support of the Technische Universität München and F. Ludovici and W. Wollner the support of the Universität Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winnifried Wollner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludovici, F., Neitzel, I. & Wollner, W. A Priori Error Estimates for State-Constrained Semilinear Parabolic Optimal Control Problems. J Optim Theory Appl 178, 317–348 (2018). https://doi.org/10.1007/s10957-018-1311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1311-8

Keywords

Mathematics Subject Classification

Navigation