Abstract
We consider the finite element discretization of semilinear parabolic optimization problems subject to pointwise in time constraints on mean values of the state variable. In order to control the feasibility violation induced by the discretization, error estimates for the semilinear partial differential equation are derived. Based upon these estimates, it can be shown that any local minimizer of the semilinear parabolic optimization problems satisfying a weak second-order sufficient condition can be approximated by the discretized problem. Rates for this convergence in terms of temporal and spatial discretization mesh sizes are provided. In contrast to other results in numerical analysis of optimization problems subject to semilinear parabolic equations, the analysis can work with a weak second-order condition, requiring growth of the Lagrangian in critical directions only. The analysis can then be conducted relying solely on the resulting quadratic growth condition of the continuous problem, without the need for similar assumptions on the discrete or time semidiscrete setting.
Similar content being viewed by others
References
de Los Reyes, J.C., Merino, P., Rehberg, J., Tröltzsch, F.: Optimality conditions for state-constrained PDE control problems with time-dependent controls. Control Cybern. 37(1), 5–38 (2008)
Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications. Springer, Netherlands (2010)
Casas, E., de los Reyes, J.C., Tröltzsch, F.: Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19(2), 616–643 (2008)
Neitzel, I., Pfefferer, J., Rösch, A.: Finite element discretization of state-constrained elliptic optimal control problems with semilinear state equation. SIAM J. Control Optim. 53(2), 874–904 (2015)
Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. I. Problems without control constraints. SIAM J. Control Optim. 47(3), 1150–1177 (2008)
Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. II. Problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008)
Ludovici, F., Wollner, W.: A priori error estimates for a finite element discretization of parabolic optimization problems with pointwise constraints in time on mean values of the gradient of the state. SIAM J. Control Optim. 53(2), 745–770 (2015)
Leykekhman, D., Vexler, B.: Optimal a priori error estimates of parabolic optimal control problems with pointwise control. SIAM J. Numer. Anal. 51(5), 2797–2821 (2013)
Neitzel, I., Vexler, B.: A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120(2), 345–386 (2012)
Meidner, D., Rannacher, R., Vexler, B.: A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM J. Control Optim. 49(5), 1961–1997 (2011)
Leykekhman, D., Meidner, D., Vexler, B.: Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints. Comput. Optim. Appl. 55(3), 769–802 (2013)
Neitzel, I., Wollner, W.: A priori \(L^2\)-discretization error estimates for the state in elliptic optimization problems with pointwise inequality state constraints. Numer. Math. 138(2), 273–299 (2018). https://doi.org/10.1007/s00211-017-0906-6
Chrysafinos, K., Karatzas, E.N.: Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE’s. Discrete Contin. Dyn. Syst. Ser. B 17(5), 1473–1506 (2012)
Chrysafinos, K.: Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE’s. M2AN Math. Model. Numer. Anal. 44(1), 189–206 (2010)
Casas, E., Mateos, M.: Uniform convergence of the FEM. Applications to state constrained control problems. Comput. Appl. Math. 21(1), 67–100 (2002)
Hinze, M., Meyer, C.: Stability of semilinear elliptic optimal control problems with pointwise state constraints. Comput. Optim. Appl. 52(1), 87–114 (2012)
Leykekhman, D., Vexler, B.: Pointwise best approximation results for Galerkin finite element solutions of parabolic problems. SIAM J. Numer. Anal. 54(3), 1365–1384 (2016)
Gong, W., Hinze, M.: Error estimates for parabolic optimal control problems with control and state constraints. Comput. Optim. Appl. 56(1), 131–151 (2013)
Deckelnick, K., Hinze, M.: Variational discretization of parabolic control problems in the presence of pointwise state constraints. J. Comput. Math. 29(1), 1–15 (2011)
Casas, E., Tröltzsch, F.: Second order optimality conditions and their role in PDE control. Jahresber. Dtsch. Math. Ver. 117(1), 3–44 (2015)
Bonnans, J., Shapiro, A.: Perturbation Analysis of Optimization Problems, Springer Series Operations Research Financial Engineering, 1st edn. Springer, New York (2010)
Goldberg, H., Tröltzsch, F.: Second-order sufficient optimality conditions for a class of nonlinear parabolic boundary control problems. SIAM J. Control Optim. 31(4), 1007–1025 (1993)
Casas, E.: Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35(4), 1297–1327 (1997)
Krumbiegel, K., Rehberg, J.: Second order sufficient optimality conditions for parabolic optimal control problems with pointwise state constraints. SIAM J. Control Optim. 51(1), 304–331 (2013)
Bonnans, J.F., Jaisson, P.: Optimal control of a parabolic equation with time-dependent state constraints. SIAM J. Control Optim. 48(7), 4550–4571 (2010)
Casas, E., Raymond, J.P., Zidani, H.: Pontryagin’s principle for local solutions of control problems with mixed control-state constraints. SIAM J. Control Optim. 39(4), 1182–1203 (2000)
Raymond, J.P., Tröltzsch, F.: Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete Contin. Dyn. Syst. 6(2), 431–450 (2000)
Ludovici, F.: Numerical analysis of parabolic optimal control problems with restrictions on the state and its first derivative. Ph.D. thesis, Technische Universität Darmstadt (2017). http://tuprints.ulb.tu-darmstadt.de/6781/
Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications., Graduate Studies in Mathematics, vol. 112. AMS, Providence (2010)
Casas, E., Mateos, M.: Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40(5), 1431–1454 (2002). (electronic)
Thomèe, V.: Galerkin Finite Element Methods for Parabolic Problems, Springer Ser. Comput. Math., 2nd edn. Springer, Berlin (2006)
Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005)
Brenner, S.C., Scott, R.L.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)
Bank, R.E., Yserentant, H.: On the \(H^1\)-stability of the \(L_2\)-projection onto finite element spaces. Numer. Math. 126(2), 361–381 (2014)
Nochetto, R.H.: Sharp \(L^\infty \)-error estimates for semilinear elliptic problems with free boundaries. Numer. Math. 54(3), 243–255 (1988)
Falk, R.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)
Meyer, C.: Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybern. 37(1), 51–83 (2008)
Casas, E., Tröltzsch, F.: Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybern. 31(3), 695–712 (2002)
Acknowledgements
The authors are grateful for the support of their former host institutions. To this end, I. Neitzel acknowledges the support of the Technische Universität München and F. Ludovici and W. Wollner the support of the Universität Hamburg.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ludovici, F., Neitzel, I. & Wollner, W. A Priori Error Estimates for State-Constrained Semilinear Parabolic Optimal Control Problems. J Optim Theory Appl 178, 317–348 (2018). https://doi.org/10.1007/s10957-018-1311-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-018-1311-8
Keywords
- Optimal control
- Semilinear parabolic PDE
- State constraints
- Pointwise in time constraints
- Space-time a priori error estimates