Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The presented study deals with the scalarization techniques for solving multiobjective optimization problems. The Pascoletti–Serafini scalarization technique is considered, and it is attempted to sidestep two weaknesses of this method, namely the inflexibility of the constraints and the difficulties of checking proper efficiency. To this end, two modifications for the Pascoletti–Serafini scalarization technique are proposed. First, by including surplus variables in the constraints and penalizing the violations in the objective function, the inflexibility of the constraints is resolved. Moreover, by including slack variables in the constraints, easy-to-check statements on proper efficiency are obtained. Thereafter, the two proposed modifications are combined to obtain the revised Pascoletti–Serafini scalarization method. Theorems are provided on the relation of (weakly, properly) efficient solutions of the multiobjective optimization problem and optimal solutions of the proposed scalarized problems. All the provided results are established with no convexity assumption. Moreover, the capability of the proposed approaches is demonstrated through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ehrgott, M., Klamroth, K., Schwehm, C.: An mcdm approach to portfolio optimization. Eur. J. Oper. Res. 155(3), 752–770 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  3. Jahn, J., Kirsch, A., Wagner, C.: Optimization of rod antennas of mobile phones. Math. Methods Oper. Res. 59(1), 37–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shao, L., Ehrgott, M.: Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning. Math. Methods Oper. Res. 68, 257–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shao, L., Ehrgott, M.: Approximating the nondominated set of an MOLP by approximately solving its dual problem. Math. Methods Oper. Res. 68, 469–492 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Soleimani-damaneh, M.: An optimization modelling for string selection in molecular biology using Pareto optimality. Appl. Math. Model. 35, 3887–3892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Thompson, D.F., Gupta, S., Shukla, A.: Tradeoff analysis in minimum volume design of multi-stage spur gear reduction units. Mech. Mach. Theory 35(5), 609–627 (2000)

    Article  MATH  Google Scholar 

  8. Zarepisheh, M., Khorram, E., Pardalos, M.P.: Generating properly efficient points in multi-objective programs by the nonlinear weighted sum scalarization method. Optimization 63(3), 473–486 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zarepisheh, M., Uribe Sanchez, A.F., Li, N., Jia, X., Jiang, S.B.: A multicriteria framework with voxel dependent parameters for radiotherapy treatment plan optimization. Medical Phys. 41(4), 1–10 (2014)

    Article  Google Scholar 

  10. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  11. Ghaznavi, M.: Optimality conditions via scalarization for approximate quasi efficiency in multiobjective optimization. Filomat 31(3), 671–680 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ghaznavi, M., Azizi, Z.: An algorithm for approximating nondominated points of convex multiobjective optimization problems. Bull. Iran. Math. Soc. 43(5), 1399–1415 (2017)

    MathSciNet  Google Scholar 

  13. Jahn, J.: Vector Optimization: Theory, Applications and Extensions. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  14. Khaledian, K., Khorram, E., Soleimani-damaneh, M.: Strongly proper efficient solutions: efficient solutions with bounded trade-offs. J. Optim. Theory Appl. 168(3), 864–883 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khorram, E., Zarepisheh, M., Ghaznavi-ghosoni, B.A.: Sensitivity analysis on the priority of the objective functions in lexicographic multiple objective linear programs. Eur. J. Oper. Res. 207(3), 1162–1168 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rastegar, N., Khorram, E.: A combined scalarizing method for multiobjective programming problems. Eur. J. Oper. Res. 236(1), 229–237 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schäffler, S., Schultz, R., Weinzierl, K.: Stochastic method for the solution of unconstrained vector optimization problems. J. Optim. Theory Appl. 114(1), 209–222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Branke, J., Deb, K., Miettinen, K., Sowiski, R.: Multiobjective Optimization Interactive and Evolutionary Approaches. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  19. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic Algorithms and Evolutionary Computation Series. Springer, New York (2007)

    MATH  Google Scholar 

  20. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, Wiley-Interscience Series in Systems and Optimization. Wiley, Chichester (2001)

    Google Scholar 

  21. Miettinen, K.: Nonlinear Multi-objective Optimization. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  22. Burachik, R.S., Kaya, C.Y., Rizvi, M.M.: A new scalarization technique to approximate Pareto fronts of problems with disconnected feasible sets. J. Optim. Theory Appl. 162(2), 428–446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chankong, V., Haimes, Y.: Multiobjective Decision Making: Theory and Methodology. Elsevier Science Publishing Co., New York (1983)

    MATH  Google Scholar 

  24. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Geoffrion, A.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3), 618–630 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ghaznavi-ghosoni, B.A., Khorram, E.: On approximating weakly/ properly efficient solutions in multiobjective programming. Math. Comput. Model. 54, 3172–3181 (2011)

    Article  MATH  Google Scholar 

  27. Ghaznavi-ghosoni, B.A., Khorram, E., Soleimani-damaneh, M.: Scalarization for characterization of approximate strong/ weak/ proper efficiency in multiobjective optimization. Optimization 62(6), 703–720 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kaliszewski, I., Michalowski, W.: Efficient solutions and bounds on tradeoffs. J. Optim. Theory Appl. 94(2), 381–394 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mavrotas, G.: Effective implementation of the \(\varepsilon \)-constraint method in multi-objective mathematical programming problems. Appl. Math. Comput. 213, 455–465 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Rizvi, M.M.: New optimality conditions for non-linear multiobjective optimization problems and new scalarization techniques for constructing pathological Pareto fronts. Ph.D. thesis, University of South Australia (2013)

  31. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44, 249–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Engau, A., Wiecek, M.M.: Generating epsilon-efficient solutions in multiobjective programming. Eur. J. Oper. Res. 177(3), 1566–1579 (2007)

    Article  MATH  Google Scholar 

  34. Helbig, S.: Approximation of the efficient point set by perturbation of the ordering cone. Z. Oper. Res. 35(3), 197–220 (1991)

    MathSciNet  MATH  Google Scholar 

  35. Khaledian, K., Khorram, E., Karimi, B.: Characterizing \(\varepsilon \)-properly efficient solutions. Optim. Methods Softw. 30, 583–593 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Khaledian, K.: Restricting the parameter set of the Pascoletti–Serafini scalarization. Bull. Iran. Math. Soc. 42(7), 89–112 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Sterna-Karwat, A.: Continuous dependence of solutions on a parameter in a scalarization method. J. Optim. Theory Appl. 55(3), 417–434 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tammer, C., Zalinescu, C.: Lipschitz properties of the scalarization function and applications. Optimization 59, 305–319 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Benson, H.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Optim. Theory Appl. 71, 232–241 (1979)

    MathSciNet  MATH  Google Scholar 

  40. Borwein, J.: Proper efficient points for maximization with respect to cones. SIAM J. Control Optim. 15, 57–63 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  41. Engau, A.: Definition and characterization of Geoffrion proper efficiency for real vector optimization with infinitely many criteria. J. Optim. Theory Appl. 165(2), 439–457 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ginchev, I., Guerraggio, A., Rocca, M.: Geoffrion type characterization of higher-order properly efficient points in vector optimization. J. Math. Anal. Appl. 16, 113–127 (1984)

    MATH  Google Scholar 

  43. Shahbeyk, S., Soleimani-damaneh, M.: Proper minimal points of nonconvex sets in Banach spaces in terms of the limiting normal cone. Optimization 66(4), 473–489 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zarepisheh, M., Pardalos, P.M.: An equivalent transformation of multi-objective optimization problems. Ann. Oper. Res. 249(1), 5–15 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, San Diego (1985)

    MATH  Google Scholar 

  46. Ehrgott, M., Ruzika, S.: Improved \(\varepsilon \)-constraint method for multiobjective programming. J. Optim. Theory Appl. 138, 375–396 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Siddiqui, S., Azarm, S., Gabriel, S.A.: On improving normal boundary intersection method for generation of Pareto frontier. Struct. Multidiscip. Optim. 46(6), 839–852 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Burachik, R.S., Kaya, C.Y., Rizvi, M.M.: A New Scalarization technique and new algorithms to generate Pareto fronts. SIAM J. Optim. 27(2), 1010–1034 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the handling editor and anonymous referees for their helpful comments and suggestions that improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Ghaznavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, F., Ghaznavi, M. & Khorram, E. A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems. J Optim Theory Appl 178, 560–590 (2018). https://doi.org/10.1007/s10957-018-1289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1289-2

Keywords

Mathematics Subject Classification

Navigation