Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Existence Result for Impulsive Multi-point Boundary Value Systems Using a Local Minimization Principle

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this article, multi-point boundary value systems with impulsive effects are considered. Existence of at least one classical solution is investigated. The basis of the approach is an application of certain variational methods for smooth functionals, which are defined on reflexive Banach spaces. Examples are provided in order to illustrate how the presented results can be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moshinsky, M.: On one-dimensional boundary value problems of a discontinuous nature. Bol. Soc. Mat. Mexicana 4, 1–25 (1947)

    MathSciNet  Google Scholar 

  2. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability, Engineering Societies Monographs, 2nd edn. McGraw-Hill Book Co., Inc., New York (1961)

    Google Scholar 

  3. Du, Z., Kong, L.: Existence of three solutions for systems of multi-point boundary value problems. Electron. J. Qual. Theory Differ. Equ. Special Edition I(10), 1–17 (2009). https://doi.org/10.14232/ejqtde.2009.4.10

  4. Feng, H.Y., Ge, W.G.: Existence of three positive solutions for \(M\)-point boundary-value problem with one-dimensional \(P\)-Laplacian. Taiwanese J. Math. 14(2), 647–665 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Graef, J.R., Heidarkhani, S., Kong, L.: A critical points approach to multiplicity results for multi-point boundary value problems. Appl. Anal. 90(12), 1909–1925 (2011). https://doi.org/10.1080/00036811.2010.534729

    Article  MathSciNet  MATH  Google Scholar 

  6. Graef, J.R., Heidarkhani, S., Kong, L.: Existence of nontrivial solutions to systems of multi-point boundary value problems. Discrete Contin. Dyn. Syst. 2013(Supplement), 273–281 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Graef, J.R., Heidarkhani, S., Kong, L.: Infinitely many solutions for systems of multi-point boundary value problems using variational methods. Topol. Methods Nonlinear Anal. 42(1), 105–118 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Ma, D.X., Chen, X.G.: Existence and iteration of positive solution for a multi-point boundary value problem with a \(p\)-Laplacian operator. Port. Math. 65(1), 67–80 (2008). https://doi.org/10.4171/PM/1799

    Article  MathSciNet  MATH  Google Scholar 

  9. Ma, R.: Existence of positive solutions for superlinear semipositone \(m\)-point boundary-value problems. Proc. Edinb. Math. Soc. (2) 46(2), 279–292 (2003). https://doi.org/10.1017/S0013091502000391

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, X., Liu, L.: Positive solutions for \(m\)-point boundary-value problems with one-dimensional \(p\)-Laplacian. J. Appl. Math. Comput. 37(1–2), 523–531 (2011). https://doi.org/10.1007/s12190-010-0447-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Bohner, M., Heidarkhani, S., Salari, A., Caristi, G.: Existence of three solutions for impulsive multi-point boundary value problems. Opuscu. Math. 37(3), 353–379 (2017). https://doi.org/10.7494/OpMath.2017.37.3.353

    Article  MathSciNet  MATH  Google Scholar 

  12. Baĭnov, D.D., Simeonov, P.S.: Systems with Impulse Effect. Ellis Horwood Series: Mathematics and its Applications (Stability, Theory and Applications). Wiley, New York (1989)

    Google Scholar 

  13. Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications, vol. 2. Hindawi Publishing Corporation, New York (2006). https://doi.org/10.1155/9789775945501

    Book  MATH  Google Scholar 

  14. Lakshmikantham, V., Baĭnov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics, vol. 6. World Scientific Publishing Co., Inc., Teaneck (1989). https://doi.org/10.1142/0906

    Book  Google Scholar 

  15. Samoĭlenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 14. World Scientific Publishing Co., Inc., River Edge (1995). https://doi.org/10.1142/9789812798664 (With a preface by Yu. A. Mitropol\(^{\prime }\)skiĭ and a supplement by S. I. Trofimchuk, Translated from the Russian by Y. Chapovsky)

  16. Bai, L., Dai, B.: Three solutions for a \(p\)-Laplacian boundary value problem with impulsive effects. Appl. Math. Comput. 217(24), 9895–9904 (2011). https://doi.org/10.1016/j.amc.2011.03.097

    MathSciNet  MATH  Google Scholar 

  17. Heidarkhani, S., Ferrara, M., Salari, A.: Infinitely many periodic solutions for a class of perturbed second-order differential equations with impulses. Acta Appl. Math. 139, 81–94 (2015). https://doi.org/10.1007/s10440-014-9970-4

    Article  MathSciNet  MATH  Google Scholar 

  18. Tian, Y., Ge, W.: Applications of variational methods to boundary-value problem for impulsive differential equations. Proc. Edinb. Math. Soc. (2) 51(2), 509–527 (2008). https://doi.org/10.1017/S0013091506001532

    Article  MathSciNet  MATH  Google Scholar 

  19. Tian, Y., Ge, W.: Variational methods to Sturm–Liouville boundary value problem for impulsive differential equations. Nonlinear Anal. 72(1), 277–287 (2010). https://doi.org/10.1016/j.na.2009.06.051

    Article  MathSciNet  MATH  Google Scholar 

  20. Xiao, J., Nieto, J.J., Luo, Z.: Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods. Commun. Nonlinear Sci. Numer. Simul. 17(1), 426–432 (2012). https://doi.org/10.1016/j.cnsns.2011.05.015

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, M., Pang, H.: A class of three-point boundary-value problems for second-order impulsive integro-differential equations in Banach spaces. Nonlinear Anal. 70(1), 64–82 (2009). https://doi.org/10.1016/j.na.2007.11.033

    Article  MathSciNet  MATH  Google Scholar 

  22. Feng, M., Xie, D.: Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations. J. Comput. Appl. Math. 223(1), 438–448 (2009). https://doi.org/10.1016/j.cam.2008.01.024

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, B., Yu, J.: Existence of solution of \(m\)-point boundary value problems of second-order differential systems with impulses. Appl. Math. Comput. 125(2–3), 155–175 (2002). https://doi.org/10.1016/S0096-3003(00)00110-7

    MathSciNet  MATH  Google Scholar 

  24. Thaiprayoon, C., Samana, D., Tariboon, J.: Multi-point boundary value problem for first order impulsive integro-differential equations with multi-point jump conditions. Bound. Value Probl. 2012, 38 (2012). https://doi.org/10.1186/1687-2770-2012-38

    Article  MathSciNet  MATH  Google Scholar 

  25. Breckner, B.E., Varga, C.: Multiple solutions of Dirichlet problems on the Sierpinski gasket. J. Optim. Theory Appl. 167(3), 842–861 (2015). https://doi.org/10.1007/s10957-013-0368-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Lisei, H., Varga, C.: A multiplicity result for a class of elliptic problems on a compactRiemannian manifold. J. Optim. Theory Appl. 167(3), 912–927 (2015). https://doi.org/10.1007/s10957-013-0365-x

    Article  MathSciNet  MATH  Google Scholar 

  27. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonhomogeneous hemivariational inequalities with indefinite potential and Robin boundary condition. J. Optim. Theory Appl. 175(2), 293–323 (2017). https://doi.org/10.1007/s10957-017-1173-5

    Article  MathSciNet  MATH  Google Scholar 

  28. Ricceri, B.: A general variational principle and some of its applications. Fixed point theory with applications in nonlinear analysis. J. Comput. Appl. Math. 113(1–2), 401–410 (2000). https://doi.org/10.1016/S0377-0427(99)00269-1

    Article  MathSciNet  MATH  Google Scholar 

  29. Bonanno, G., Molica Bisci, G.: Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. pp. Art. ID 670,675, 20 (2009)

  30. Afrouzi, G.A., Hadjian, A., Molica Bisci, G.: Some remarks for one-dimensional mean curvature problems through a local minimization principle. Adv. Nonlinear Anal. 2(4), 427–441 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Galewski, M., Molica Bisci, G.: Existence results for one-dimensional fractional equations. Math. Methods Appl. Sci. 39(6), 1480–1492 (2016). https://doi.org/10.1002/mma.3582

    Article  MathSciNet  MATH  Google Scholar 

  32. Heidarkhani, S., Afrouzi, G.A., Ferrara, M., Caristi, G., Moradi, S.: Existence results for impulsive damped vibration systems. Bull. Malays. Math. Sci. Soc. (2016). https://doi.org/10.1007/s40840-016-0400-9

  33. Heidarkhani, S., Afrouzi, G.A., Moradi, S., Caristi, G., Ge, B.: Existence of one weak solution for \(p(x)\)-biharmonic equations with Navier boundary conditions. Z. Angew. Math. Phys. 67(3), 73 (2016). https://doi.org/10.1007/s00033-016-0668-5

    Article  MathSciNet  MATH  Google Scholar 

  34. Heidarkhani, S., Zhou, Y., Caristi, G., Afrouzi, G.A., Moradi, S.: Existence results for fractional differential systems through a local minimization principle. Comput. Math. Appl. (2016). https://doi.org/10.1016/j.camwa.2016.04.012

  35. Afrouzi, G.A., Heidarkhani, S., Moradi, S.: Existence of weak solutions for three-point boundary-value problems of Kirchhoff-type. Electron. J. Differ. Equ. 2016(234), 1–13 (2016). http://ejde.math.txstate.edu

  36. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/A. Springer, New York (1990). https://doi.org/10.1007/978-1-4612-0985-0 (Linear monotone operators, Translated from the German by the author and Leo F. Boron)

Download references

Acknowledgements

The authors wish to thank all involved Editors and Referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bohner.

Additional information

Communicated by Irena Lasiecka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrouzi, G.A., Bohner, M., Caristi, G. et al. An Existence Result for Impulsive Multi-point Boundary Value Systems Using a Local Minimization Principle. J Optim Theory Appl 177, 1–20 (2018). https://doi.org/10.1007/s10957-018-1253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1253-1

Keywords

Mathematics Subject Classification

Navigation