Abstract
We propose and study the iteration-complexity of an inexact version of the Spingarn’s partial inverse method. Its complexity analysis is performed by viewing it in the framework of the hybrid proximal extragradient method, for which pointwise and ergodic iteration-complexity has been established recently by Monteiro and Svaiter. As applications, we propose and analyze the iteration-complexity of an inexact operator splitting algorithm—which generalizes the original Spingarn’s splitting method—and of a parallel forward–backward algorithm for multi-term composite convex optimization.
Similar content being viewed by others
Notes
see, e.g., [32, Corollary 16.39]
References
Spingarn, J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10(3), 247–265 (1983)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)
Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7(4), 323–345 (1999)
Boţ, R.I., Csetnek, E.R.: A hybrid proximal-extragradient algorithm with inertial effects. Numer. Funct. Anal. Optim. 36(8), 951–963 (2015)
Ceng, L.C., Mordukhovich, B.S., Yao, J.C.: Hybrid approximate proximal method with auxiliary variational inequality for vector optimization. J. Optim. Theory Appl. 146(2), 267–303 (2010)
Eckstein, J., Silva, P.J.S.: A practical relative error criterion for augmented Lagrangians. Math. Program. 141(1–2, Ser. A), 319–348 (2013)
He, Y., Monteiro, R.D.C.: An accelerated HPE-type algorithm for a class of composite convex-concave saddle-point problems. SIAM J. Optim. 26(1), 29–56 (2016)
Iusem, A.N., Sosa, W.: On the proximal point method for equilibrium problems in Hilbert spaces. Optimization 59(8), 1259–1274 (2010)
Lotito, P.A., Parente, L.A., Solodov, M.V.: A class of variable metric decomposition methods for monotone variational inclusions. J. Convex Anal. 16(3–4), 857–880 (2009)
Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: Implementation of a block-decomposition algorithm for solving large-scale conic semidefinite programming problems. Comput. Optim. Appl. 57(1), 45–69 (2014)
Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: An adaptive accelerated first-order method for convex optimization. Comput. Optim. Appl. 64(1), 31–73 (2016)
Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23(1), 475–507 (2013)
Solodov, M.V., Svaiter, B.F.: An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions. Math. Oper. Res. 25(2), 214–230 (2000)
Solodov, M.V., Svaiter, B.F.: A unified framework for some inexact proximal point algorithms. Numer. Funct. Anal. Optim. 22(7–8), 1013–1035 (2001)
Monteiro, R.D.C., Svaiter, B.F.: On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean. SIAM J. Optim. 20, 2755–2787 (2010)
Gonçalves, M.L.N., Melo, J.G., Monteiro, R.D.C.: Improved Pointwise Iteration-Complexity of a Regularized ADMM and of a Regularized Non-euclidean HPE Framework, pp. 30332–0205. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta (2016)
Burachik, R.S., Sagastizábal, C.A., Scheimberg, S.: An inexact method of partial inverses and a parallel bundle method. Optim. Methods Softw. 21(3), 385–400 (2006)
Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. 5(2), 159–180 (1997)
Martinez-Legaz, J.-E., Théra, M.: \(\epsilon \)-subdifferentials in terms of subdifferentials. Set-Valued Anal. 4(4), 327–332 (1996)
Burachik, R.S., Sagastizábal, C.A., Svaiter, B.F.: \(\epsilon \)-enlargements of maximal monotone operators: theory and applications. In: Fukushima, M., Qi, L. (eds.) Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods (Lausanne, 1997) vol. 22 of Appl. Optim., pp. 25–43. Kluwer Acad. Publ., Dordrecht (1999)
Monteiro, R. D. C., Svaiter, B. F.: Convergence rate of inexact proximal point methods with relative error criteria for convex optimization. http://www.optimization-online.org/DB_HTML/2010/08/2714.html (2010)
Nesterov, Y.: Introductory Lectures on Convex Optimization. A Basic Course. Kluwer Academic Publishers, Boston (2004)
Monteiro, R.D.C., Svaiter, B.F.: Complexity of variants of Tseng’s modified F-B splitting and Korpelevich’s methods for hemivariational inequalities with applications to saddle point and convex optimization problems. SIAM J. Optim. 21, 1688–1720 (2010)
Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999)
Alghamdi, M.A., Alotaibi, A., Combettes, P.L., Shahzad, N.: A primal-dual method of partial inverses for composite inclusions. Optim. Lett. 8(8), 2271–2284 (2014)
Ouorou, A.: Epsilon-proximal decomposition method. Math. Program. 99(1, Ser. A), 89–108 (2004)
Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16(3–4), 727–748 (2009)
Bauschke, H.H., Boţ, R.I., Hare, W.L., Moursi, W.M.: Attouch-Théra duality revisited: paramonotonicity and operator splitting. J. Approx. Theory 164(8), 1065–1084 (2012)
Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21(4), 1230–1250 (2011)
Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two maximal monotone operators. Math. Program. 111(1–2, Ser. B), 173–199 (2008)
Eckstein, J., Svaiter, B.F.: General projective splitting methods for sums of maximal monotone operators. SIAM J. Control Optim. 48(2), 787–811 (2009)
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)
Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)
Briceño-Arias, Luis M.: Forward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusions. Optimization 64(5), 1239–1261 (2015)
Acknowledgements
The work of S. C. L. was partially supported by CAPES Scholarship No. 201302186. The work of the first author was partially supported by CNPq Grants Nos. 406250/2013-8, 405214/2016-2 and 306317/2014-1. We are thankful to the two anonymous referees for their constructive suggestions which have improved the first version of this paper and for bringing to our attention the references [27] and [34].
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Marc Bonnet.
Rights and permissions
About this article
Cite this article
Alves, M.M., Lima, S.C. An Inexact Spingarn’s Partial Inverse Method with Applications to Operator Splitting and Composite Optimization. J Optim Theory Appl 175, 818–847 (2017). https://doi.org/10.1007/s10957-017-1188-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-017-1188-y
Keywords
- Inexact proximal point methods
- Partial inverse method
- Splitting
- Composite optimization
- Forward–backward
- Parallel
- Iteration-complexity