Abstract
Imatinib is a highly effective treatment for chronic myeloid leukemia, a common type of leukemia. Treatment efficacy of imatinib has been further improved by combination therapy with exogenic cytokine interferon-\(\alpha \). However, the prolonged administration of drug and immunotherapy exacts a significant cost to the patient’s quality of life, due to the treatments side effects. We present a mathematical model for the scheduling of combined treatment with imatinib and interferon-\(\alpha \) by finite-dimensional optimal control problems. The explicit formulas for the optimal controls minimizing the integral quality criterion are obtained, and the corresponding leukemia treatment process is then described by numerical simulation. The attained optimization of treatment holds clinical potential for improving patient’s quality of life, as well as overall prognosis.
Similar content being viewed by others
References
Byrne, H.M.: Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev. Cancer 10, 221–230 (2010)
Michor, F., Iwasa, Y., Nowak, M.: Dynamics of cancer progression. Nat. Rev. Cancer 4(3), 197–205 (2004)
Kuznetsov, V., Makalkin, I., Taylor, M., Perelson, A.: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56, 295–321 (1994)
Kirschner, D., Panetta, J.: Modelling immunotherapy of the tumor–immune interaction. J. Math. Biol. 37(3), 235–252 (1998)
d’Onofrio, A.: Tumor–immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy. Math. Models Methods Appl. Sci. 16(8), 1375–1401 (2006)
Kronik, N., Kogan, Y., Vainstein, V., Agur, Z.: Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol. Immunother. 57, 425–439 (2008)
d’Onofrio, A., Gatti, F., Cerrai, P., Freschi, L.: Delay-induced oscillatory dynamics of tumour–immune system interaction. Math. Comput. Model. 51, 572–591 (2010)
Owen, M., Byrne, H., Lewis, C.: Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. J. Theor. Biol. 226, 377–391 (2004)
Bunimovich-Mendrazitsky, S., Pisarev, V., Kashdan, E.: Modeling and simulation of a low-grade urinary bladder carcinoma. Comput. Biol. Med. 58, 118–129 (2015)
Faderl, S., Talpaz, M., Estrov, Z., O’Brien, S., Kurzrock, R., Kantarjian, H.: The biology of chronic myeloid leukemia. N. Engl. J. Med. 341(3), 164–172 (1999)
Guilhot, F., Roy, L., Martineua, G., Guilhot, J., Millot, F.: Immunotherapy in chronic myelogenous leukemia. Clin. Lymph. Myeloma 7(Suppl 2), S64–70 (2007)
Burchert, A., Neubauer, A.: Interferon alpha and T-cell responses in chronic myeloid leukemia. Leuk. Lymph. 46(2), 167–75 (2005)
Montoya, M., Schiavoni, G., Mattei, F., Gresser, I., Belardelli, F., Borrow, P., Tough, D.F.: Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood 99, 3263–3271 (2002)
Druker, B.J., Talpaz, M., et al.: Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001)
Deininger, M.W.N., Buchdunger, E., Druker, B.J.: The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105, 2640–2653 (2005)
Burchert, A., Saussele, S., Eigendorff, E., et al.: Interferon alpha 2 maintenance therapy may enable high rates of treatment discontinuation in chronic myeloid leukemia. Leukemia 29(6), 1331–5 (2015)
Hardan, I., Stanevsky, A., Volchek, Y., et al.: Treatment with interferon alpha prior to discontinuation of imatinib in patients with chronic myeloid leukemia. Cytokine 57(2), 290–3 (2012)
Preudhomme, C., Guilhot, J., Nicolini, F.E., et al.: Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N. Engl. J. Med. 363(26), 2511–2521 (2010)
Simonsson, B., Gedde-Dahl, T., Markevarn, B., et al.: Combination of pegylated IFN-alpha2b with imatinib increases molecular response rates in patients with low- or intermediate-risk chronic myeloid leukemia. Blood 118(12), 3228–35 (2011)
Cappuccio, A., Elishmereni, M., Agur, Z.: Optimization of interleukin-21 immunotherapeutic strategies. J. Theor. Biol. 248, 259–266 (2007)
d’Onofrio, A., Gandolfi, A.: Tumor eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. Math. Biosci. 191, 159–184 (2004)
d’Onofrio, A.: A general framework for modelling tumour immune system and immunotherapy: mathematical analysis and medical inferences. Physica D 208, 220–235 (2005)
d’Onofrio, A., Gandolfi, A., Rocca, A.: The dynamics of tumour vasculature interaction suggests low dose, time-dense antiangiogenic scheduling. Cell Prolif. 42, 317–329 (2009)
de Pillis, L.G., Gu, W., Fister, K.R., Head, T., Maples, K., Murugan, A., Neal, T., Yoshida, K.: Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls. Math. Biosci. 209(1), 292–315 (2007)
Smieja, J., Swierniak, A., Duda, Z.: Gradient method for finding optimal scheduling in infinite dimensional models of chemotherapy. J. Theor. Med. 3, 25–36 (2001)
Stengel, R.F., Ghigliazza, R., Kulkarni, N., Laplace, O.: Optimal control of innate immune response. Optim. Control Appl. Methods 23, 91–104 (2002)
Burden, T., Ernstberger, J., Fister, K.R.: Optimal control applied to immunotherapy. Discrete Contin. Dyn. Syst. Ser. B 4, 135–146 (2004)
Fister, K.R., Donnelly, J.H.: Immunotherapy: an optimal control approach. Math. Biosci. Eng. (MBE) 2, 499–510 (2005)
d’Onofrio, A., Ledzewicz, U., Maurer, H., Schattler, H.: On optimal delivery of combination therapy for tumors. Math. Biosci. 222, 13–26 (2009)
Jager, E., van der Velden, V.H.J., te Marvelde, J.G., Walter, R.B., Agur, Z., et al.: Targeted drug delivery by gemtuzumab ozogamicin: mechanism-based mathematical model for treatment strategy improvement and therapy individualization. PLoS ONE 6, E24265 (2011)
Moore, H., Li, N.K.: A mathematical model of chronic myelogenous leukemia (CML) and T cell interaction. J. Theor. Biol. 227, 513 (2004)
Kim, P., Lee, P., Levy, D.: Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput. Biol. 4, e1000095 (2008)
Michor, F., Hughes, T., Iwasa, Y., Branford, S., Shah, N., Sawyers, C., Nowak, M.: Dynamics of chronic myeloid leukemia. Nature 435, 1267–1270 (2005)
Michor, F., Iwasa, Y., Nowak, M.: The age incidence of chronic myeloid leukemia can be explained by a one-mutation model. Proc. Natl. Acad. Sci. U. S. A. 103, 14931–14934 (2006)
Nanda, S., Moore, H., Lenhart, S.: Optimal control of treatment in a mathematical model of chronic myelogenous leukemia. Math. Biosci. 210, 143 (2007)
Roeder, I., Horn, M., Glauche, I., et al.: Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat. Med. 12, 1181–1184 (2006)
Radulescu, I.R., Candea, D., Halanay, A.: Optimal control analysis of a leukemia model under imatinib treatment. Math. Comput. Simul. 121, 1–11 (2016)
Swierniak, A.: Optimal treatment protocols in leukemia—modelling the proliferation cycle. In: Proceedings of the 12th IMACS World Congress, Paris, vol. 4, pp. 170–172 (1988)
Wodarz, D., Komarova, N.: Emergence and prevention of resistance against small molecule inhibitors. Semin. Cancer Biol. 15, 506–514 (2005)
Fister, K.R., Panetta, J.C.: Optimal control applied to cell-cycle specific cancer chemotherapy. SIAM J. Appl. Math. 60, 1059–1072 (2000)
Berezansky, L., Bunimovich-Mendrazitsky, S., Domoshnitsky, A.: A mathematical model with time-varying delays in the combined treatment of chronic myeloid leukemia. Adv. Differ. Equ. 217, 257–266 (2013)
Berezansky, L., Bunimovich-Mendrazitsky, S., Shklyar, B.: Stability and controllability issues in mathematical modeling of the intensive treatment of leukemia. J. Optim. Theory Appl. 167(1), 326–341 (2015)
Norton, L.: A Gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988)
Laird, A.K.: Dynamics of tumor growth. Br. J. Cancer 18, 490–502 (1964)
Pontryagin, L., Boltyanskii, V., Gamkrelidze, R., Mishchenko, E.: The Mathematical Theory of Optimal Processes. Interscience, New York. ISBN 2-88124-077-1 (1962)
Dunford, N., Schwartz, J.T.: Linear Operators, vol. 1. Wiley-Interscience, New York (1958)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Alberto d’Onofrio.
Rights and permissions
About this article
Cite this article
Bunimovich-Mendrazitsky, S., Shklyar, B. Optimization of Combined Leukemia Therapy by Finite-Dimensional Optimal Control Modeling. J Optim Theory Appl 175, 218–235 (2017). https://doi.org/10.1007/s10957-017-1161-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-017-1161-9