Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Separation Functions and Optimality Conditions in Vector Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose weak separation functions in the image space for general constrained vector optimization problems on strong and weak vector minimum points. Gerstewitz function is applied to construct a special class of nonlinear separation functions as well as the corresponding generalized Lagrangian functions. By virtue of such nonlinear separation functions, we derive Lagrangian-type sufficient optimality conditions in a general context. Especially for nonconvex problems, we establish Lagrangian-type necessary optimality conditions under suitable restriction conditions, and we further deduce Karush–Kuhn–Tucker necessary conditions in terms of Clarke subdifferentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Proceedings of the Ninth International Mathematical Programming Symposium, Budapest, Survey of Mathematical Programming, vol. 2, pp. 423-439. North-Holland, Amsterdam (1979)

  2. Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 42, 331–365 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Giannessi, F.: Constrained Optimization and Image Space Analysis, Separation of Sets and Optimality Conditions, vol. 1. Springer, Berlin (2005)

    MATH  Google Scholar 

  4. Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities. Image space analysis and separation. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, pp. 153–215. Kluwer, Dordrech (2000)

    Chapter  Google Scholar 

  5. Mastroeni, G.: Nonlinear separation in the image space with applications to penalty methods. Appl. Anal. 91, 1901–1914 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Luo, H.Z., Mastroeni, G., Wu, H.X.: Separation approach for augmented Lagrangians in constrained nonconvex optimization. J. Optim. Theory Appl. 144, 275–290 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Luo, H.Z., Wu, H.X., Liu, J.Z.: Some results on augmented Lagrangians in constrained global optimization via image space analysis. J. Optim. Theory Appl. 159, 360–385 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, S.J., Xu, Y.D., Zhu, S.K.: Nonlinear separation approach to constrained extremum problems. J. Optim. Theory Appl. 154, 842–856 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Li, J., Feng, S.Q., Zhang, Z.: A unified approach for constrained extremum problems: image space analysis. J. Optim. Theory Appl. 159, 69–92 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Xu, Y.D., Li, S.J.: Nonlinear separation functions and constrained extremum problems. Optim. Lett. 8, 1149–1160 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Giannessi, F., Mastroeni, G.: Separation of sets and Wolfe duality. J. Glob. Optim. 42, 401–412 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mastroeni, G.: Some applications of the image space analysis to the duality theory for constrained extremum problems. J. Glob. Optim. 46, 603–614 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems. Part 1: sufficient optimality conditions. J. Optim. Theory Appl. 142, 147–163 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems. Part 2: necessary optimality conditions. J. Optim. Theory Appl. 142, 165–183 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhu, S.K., Li, S.J.: United duality theory for constrained extremum problems. Part I: image space analysis. J. Optim. Theory Appl. 161, 738–762 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhu, S.K., Li, S.J.: United duality theory for constrained extremum problems. Part II: special duality schemes. J. Optim. Theory Appl. 161, 763–782 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Geoffrion, A.M.: Proper efficiency and theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schirotzek, W.: Nonsmooth Analysis. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  19. Gerth, C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Khan, A.A., Tammer, C., Zalinescu, C.: Set-Valued Optimization. An Introduction with Applications. Springer, Berlin (2015)

    MATH  Google Scholar 

  21. Burachik, R.S., Rizvi, M.M.: On weak and strong Kuhn–Tucker conditions for smooth multiobjective optimization. J. Optim. Theory Appl. 155, 477–491 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dureaa, M., Tammer, C.: Fuzzy necessary optimality conditions for vector optimization problems. Optimization 58, 449–467 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to Professor F. Giannessi and the referees for comments and valuable suggestions. This research was supported by the National Natural Science Foundation of China (Grant Numbers: 11171362, 11571055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengjie Li.

Additional information

Communicated by Jafar Zafarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, M., Li, S. Separation Functions and Optimality Conditions in Vector Optimization. J Optim Theory Appl 175, 527–544 (2017). https://doi.org/10.1007/s10957-016-1029-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-1029-4

Keywords

Mathematics Subject Classification

Navigation