Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Chain Rules for a Proper \(\varepsilon \)-Subdifferential of Vector Mappings

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we derive exact chain rules for a proper epsilon-subdifferential in the sense of Benson of extended vector mappings, recently introduced by ourselves. For this aim, we use a new regularity condition and a new strong epsilon-subdifferential for vector mappings. In particular, we determine chain rules when one of the mappings is linear, obtaining formulations easier to handle in the finite-dimensional case by considering the componentwise order. This Benson proper epsilon-subdifferential generalizes and improves several of the most important proper epsilon-subdifferentials of vector mappings given in the literature and, consequently, the results presented in this work extend known chain rules stated for the last ones. As an application, we derive a characterization of approximate Benson proper solutions of implicitly constrained convex Pareto problems. Moreover, we estimate the distance between the objective values of these approximate proper solutions and the set of nondominated attained values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gutiérrez, C., Huerga, L., Jiménez, B., Novo, V.: Proper approximate solutions and \(\varepsilon \)-subdifferentials in vector optimization: Basic properties and limit behaviour. Nonlinear Anal. 79, 52–67 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gutiérrez, C., Huerga, L., Novo, V.: Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems. J. Math. Anal. Appl. 389, 1046–1058 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gao, Y., Yang, X., Teo, K.L.: Optimality conditions for approximate solutions of vector optimization problems. J. Ind. Manag. Optim. 7, 483–496 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gutiérrez, C., Jiménez, B., Novo, V.: On approximate efficiency in multiobjective programming. Math. Methods Oper. Res. 64, 165–185 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gutiérrez, C., Jiménez, B., Novo, V.: A unified approach and optimality conditions for approximate solutions of vector optimization problems. SIAM J. Optim. 17, 688–710 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gutiérrez, C., Huerga, L., Jiménez, B., Novo, V.: Proper approximate solutions and \(\varepsilon \)-subdifferentials in vector optimization: Moreau–Rockafellar type theorems. J. Convex Anal. 21, 857–886 (2014)

    MATH  MathSciNet  Google Scholar 

  7. El Maghri, M.: Pareto–Fenchel \(\varepsilon \)-subdifferential sum rule and \(\varepsilon \)-efficiency. Optim. Lett. 6, 763–781 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Tuan, L.A.: \(\varepsilon \)-optimality conditions for vector optimization problems with set-valued maps. Numer. Funct. Anal. Optim. 31, 78–95 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. El Maghri, M.: Pareto–Fenchel \(\varepsilon \)-subdifferential composition rule and \(\varepsilon \)-efficiency. Numer. Funct. Anal. Optim. 35, 1–19 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Raffin, C.: Contribution à l’Étude des Programmes Convexes Définis dans des Espaces Vectoriels Topologiques. Thèse, Université Pierre et Marie Curie, Paris (1969)

    Google Scholar 

  11. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)

    MATH  Google Scholar 

  12. Jahn, J.: Vector Optimization. Theory, Applications, and Extensions. Springer, Berlin (2011)

    MATH  Google Scholar 

  13. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  14. Rong, W.: Proper \(\varepsilon \)-efficiency in vector optimization problems with cone-subconvexlikeness. Acta Sci. Natur. Univ. NeiMongol 28, 609–613 (1997)

    MathSciNet  Google Scholar 

  15. Kutateladze, S.S.: Convex \(\varepsilon \)-programming. Soviet Math. Dokl. 20, 391–393 (1979)

    MATH  Google Scholar 

  16. Brøndsted, A., Rockafellar, R.T.: On the subdifferentiability of convex functions. Proc. Am. Math. Soc. 16, 605–611 (1965)

    Article  Google Scholar 

  17. Yang, X.M., Li, D., Wang, S.Y.: Near-subconvexlikeness in vector optimization with set-valued functions. J. Optim. Theory Appl. 110, 413–427 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Borwein, J.: Proper efficient points for maximizations with respect to cones. SIAM J. Control Optim. 15, 57–63 (1977)

    Article  MATH  Google Scholar 

  19. El Maghri, M., Laghdir, M.: Pareto subdifferential calculus for convex vector mappings and applications to vector optimization. SIAM J. Optim. 19, 1970–1994 (2009)

    Article  MATH  Google Scholar 

  20. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  21. Hiriart-Urruty, J.-B.: \(\varepsilon \)-subdifferential calculus. Res. Notes Math. 57, 43–92 (1982)

    MathSciNet  Google Scholar 

  22. Gutiérrez, C., López, R., Novo, V.: Existence and boundedness of solutions in infinite-dimensional vector optimization problems. J. Optim. Theory Appl. 162, 515–547 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Ministerio de Economía y Competitividad (Spain) under project MTM2012-30942. The authors are very grateful to the anonymous referee for his/her helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Novo.

Additional information

Communicated by Boris S. Mordukhovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, C., Huerga, L., Novo, V. et al. Chain Rules for a Proper \(\varepsilon \)-Subdifferential of Vector Mappings. J Optim Theory Appl 167, 502–526 (2015). https://doi.org/10.1007/s10957-015-0763-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0763-3

Keywords

Mathematics Subject Classification

Navigation