Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A New Approach to Control Design for Constraint-following for Fuzzy Mechanical Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A new approach to the control design for the constraint-following of fuzzy mechanical system is proposed in this paper. We consider the mechanical system containing uncertainty, which may be nonlinear and fast time varying. The uncertainty is assumed to be bounded, and the bound of the uncertainty lies within a prescribed fuzzy set. A class of robust controls is proposed, and the corresponding adaptive law is constructed to emulate a constant parameter related to the bound of the uncertainty. The control scheme is deterministic and is not if-then rule based. Furthermore, we formulate the gain design of the adaptive law as a constrained optimization problem, which minimizes both the average fuzzy performance and the control effort. It is proved that the global solution to this optimization problem exists and is unique. The closed-form solution and the closed-form minimum cost are presented. The resulting adaptive robust control is able to guarantee the uniform boundedness and uniform ultimate boundedness of the uncertain system regardless of the uncertainty, while minimizing the average fuzzy performance and control effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Papastavridis, J.G.: Analytical Mechanics. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  2. Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, New York (2003)

    Book  MATH  Google Scholar 

  3. Wang, Z.P., Ge, S.S., Lee, T.H.: Robust motion/force control of uncertain holonomic/nonholonomic mechanical systems. IEEE/ASME Trans. Mechatron. 9, 118–123 (2004)

    Article  Google Scholar 

  4. Kumar, P.R., Varaiya, P.: Stochastic Systems: Estimation, Identification, and Adaptive Control. Prentice-Hall, Englewood Cliffs (1986)

    MATH  Google Scholar 

  5. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  6. Kalman, R.E.: Contributions to the theory of optimal control. Bol. Soc. Mastematica Mex. 5, 102–119 (1960)

    MathSciNet  Google Scholar 

  7. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ho, W.H., Tsai, J.T., Chou, J.H.: Robust quadratic-optimal control of TS-fuzzy-model-based dynamic systems with both elemental parametric uncertainties and norm-bounded approximation error. IEEE Trans. Fuzzy Syst. 17, 518–531 (2009)

    Article  Google Scholar 

  9. Zhang, K., Jiang, B., Staroswiecki, M.: Dynamic output feedback fault tolerant controller design for Takagi–Sugeno fuzzy systems with actuator faults. IEEE Trans. Fuzzy Syst. 18, 194–201 (2010)

    Article  Google Scholar 

  10. Chen, C.W., Yeh, K., Liu, K.F., Lin, M.L.: Applications of fuzzy control to nonlinear time-delay systems using the linear matrix inequality fuzzy Lyapunov method. J. Vib. Control 18, 1561–1574 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kalaba, R.E., Udwadia, F.E.: Lagrangian mechanics, Gauss’s principle, quadratic programming, and generalized inverses: new equations of motion for nonholonomically constrained discrete mechanical systems. Q. Appl. Math. 52, 229–241 (1994)

    MATH  MathSciNet  Google Scholar 

  12. Udwadia, F.E., Kalaba, R.E.: An alternate proof for the equations of motion for constrained mechanical systems. Appl. Math. Comput. 70, 339–342 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Udwadia, F.E., Kalaba, R.E., Eun, H.C.: Equations of motion for constrained mechanical systems and the extended d’Alembert principle. Q. Appl. Math. 56, 321–331 (1997)

    MathSciNet  Google Scholar 

  14. Pars, L.A.: A Treatise on Analytical Dynamics. OX Bow Press, Woodbridge (1965)

    MATH  Google Scholar 

  15. Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum, New York (1977)

    Book  MATH  Google Scholar 

  16. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, New York (1996)

    Book  Google Scholar 

  17. Chen, Y.H.: Constraint-following servo control design for mechanical systems. J. Vib. Control 15, 369–389 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Noble, B., Daniel, J.W.: Applied Linear Algebra. Prentice Hall, Englewood Cliffs (1977)

    MATH  Google Scholar 

  19. Khalil, H.K.: Nonlinear Systems. Prentice Hall International Inc., Upper Saddle River (2002)

    MATH  Google Scholar 

  20. Chen, Y.H.: On the deterministic performance of uncertain dynamical systems. Int. J. Control 43, 1557–1579 (1986)

    Article  MATH  Google Scholar 

  21. Etik, N., Allahverdi, N., Sert, I.U., Saritas, I.: Fuzzy expert system design for operating room air-condition control systems. Expert Syst. Appl. 36, 9753–9758 (2009)

    Article  Google Scholar 

  22. Hale, J.K.: Ordinary Differential Equations. Wiley-Interscience, New York (1969)

    MATH  Google Scholar 

  23. Stewart, J.: Multivariable Calculus. Thompson Brooks/Cole, Belmont (2008)

    Google Scholar 

  24. Bronshtein, I.N., Semendyayev, K.A.: Handbook of Mathematics. Van Nostrand Reinhold, New York (1985)

    Google Scholar 

  25. Hwang, C.L., Hsu, J.C.: Nonlinear control design for a Hammerstein model system. IEE Proc. Control Theory Appl. 142, 277–285 (1995)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The research of Jinquan Xu was sponsored by China Scholarship Council (No. 201206020054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Hwa Chen.

Additional information

Communicated by Jyh-Horng Chou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Chen, YH. & Guo, H. A New Approach to Control Design for Constraint-following for Fuzzy Mechanical Systems. J Optim Theory Appl 165, 1022–1049 (2015). https://doi.org/10.1007/s10957-014-0604-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0604-9

Keywords

Mathematics Subject Classification (2000)

Navigation