Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Clusterwise linear regression consists of finding a number of linear regression functions each approximating a subset of the data. In this paper, the clusterwise linear regression problem is formulated as a nonsmooth nonconvex optimization problem and an algorithm based on an incremental approach and on the discrete gradient method of nonsmooth optimization is designed to solve it. This algorithm incrementally divides the whole dataset into groups which can be easily approximated by one linear regression function. A special procedure is introduced to generate good starting points for solving global optimization problems at each iteration of the incremental algorithm. The algorithm is compared with the multi-start Späth and the incremental algorithms on several publicly available datasets for regression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Preda, C., Saporta, G.: Clusterwise PLS regression on a stochastic process. Comput. Stat. Data Anal. 49, 99–108 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Wedel, M., Kistemaker, C.: Consumer benefit segmentation using clusterwise linear regression. Int. J. Res. Mark. 6(1), 45–59 (1989)

    Article  Google Scholar 

  3. Späth, H.: Algorithm 39: clusterwise linear regression. Computing 22, 367–373 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Späth, H.: Algorithm 48: a fast algorithm for clusterwise linear regression. Computing 29, 175–181 (1981)

    Article  Google Scholar 

  5. Gaffney, S., Smyth, P.: Trajectory clustering using mixtures of regression models. In: Chaudhuri, S., Madigan, D. (eds.) Proceedings of the ACM Conference on Knowledge Discovery and Data Mining, New York, pp. 63–72 (1999)

  6. Zhang, B.: Regression clustering. In: Proceedings of the Third IEEE International Conference on Data Mining (ICDM03), pp. 451–458. IEEE Computer Society, Washington, DC (2003)

  7. DeSarbo, W.S., Cron, W.L.: A maximum likelihood methodology for clusterwise linear regression. J. Classif. 5(2), 249–282 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garcìa-Escudero, L.A., Gordaliza, A., Mayo-Iscar, A., San Martin, R.: Robust clusterwise linear regression through trimming. Comput. Stat. Data Anal. 54, 3057–3069 (2010)

    Article  MATH  Google Scholar 

  9. DeSarbo, W.S., Oliver, R.L., Rangaswamy, A.: A simulated annealing methodology for clusterwise linear regression. Psychometrika 54(4), 707–736 (1989)

    Article  Google Scholar 

  10. Carbonneau, R.A., Caporossi, G., Hansen, P.: Globally optimal clusterwise regression by mixed logical-quadratic programming. Eur. J. Oper. Res. 212, 213–222 (2011)

    Article  MathSciNet  Google Scholar 

  11. Caporossi, G., Hansen, P.: Variable neighborhood search for least squares clusterwise regression. Technical Report, G-2005-61, Les Cahiers du GERAD, Montreal (2005)

  12. Bagirov, A.M., Ugon, J., Mirzayeva, H.: Nonsmooth nonconvex optimization approach to clusterwise linear regression problems. Eur. J. Oper. Res. 229, 132–142 (2013)

    Article  MathSciNet  Google Scholar 

  13. Bagirov, A.M.: Continuous subdifferential approximations and their applications. J. Math. Sci. 115(5), 2567–2609 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bagirov, A.M., Karasozen, B., Sezer, M.: Discrete gradient method: derivative-free method for nonsmooth optimization. J. Optim. Theory Appl. 137(2), 317–334 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Clarke, F.H.: Optimization and Nonsmooth Analysis. John Wiley, New York (1983)

    MATH  Google Scholar 

  16. Bagirov, A.M., Ugon, J.: Piecewise partially separable functions and a derivative-free algorithm for large scale nonsmooth optimization. J. Glob. Optim. 35(2), 163–195 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  18. Bache, K., Lichman, M.: UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA (2013). http://archive.ics.uci.edu/ml

  19. Yeh, I-Cheng: Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cem. Concr. Compos. 29(6), 474–480 (2007)

    Article  Google Scholar 

  20. Cortez, P., Morais, A.: A Data mining approach to predict forest fires using meteorological data. In: Neves, J., Santos, M.F., Machado, J. (eds.) New Trends in Artificial Intelligence, Proceedings of the 13th EPIA 2007-Portuguese Conference on Artificial Intelligence, Guimaraes, pp. 512–523 (2007)

  21. Yeh, I-Cheng: Modeling of strength of high performance concrete using artificial neural networks. Cem. Concr. Res. 28(12), 1797–1808 (1998)

    Article  Google Scholar 

  22. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 47(4), 547–553 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The research by A.M. Bagirov was supported under Australian Research Council’s Discovery Projects funding scheme (Project No. DP140103213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil M. Bagirov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagirov, A.M., Ugon, J. & Mirzayeva, H.G. Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems. J Optim Theory Appl 164, 755–780 (2015). https://doi.org/10.1007/s10957-014-0566-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0566-y

Keywords

Mathematics subject classification

Navigation