Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Scalarization of \(\epsilon \)-Super Efficient Solutions of Set-Valued Optimization Problems in Real Ordered Linear Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the scalarization of \(\epsilon \)-super efficient solutions of set-valued optimization problems in real ordered linear spaces. First, in real ordered linear spaces, under the assumption of generalized cone subconvexlikeness of set-valued maps, a dual decomposition theorem is established in the sense of \(\epsilon \)-super efficiency. Second, as an application of the dual decomposition theorem, a linear scalarization theorem is given. Finally, without any convexity assumption, a nonlinear scalarization theorem characterized by the seminorm is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borwein, J.M.: Proper efficient points for maximizations with respect to cones. SIAM J. Control. Optim. 15, 57–63 (1977)

    Article  MATH  Google Scholar 

  4. Henig, M.I.: Proper efficiency with respect to cones. J. Optim. Theory Appl. 36, 387–407 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borwein, J.M., Zhuang, D.M.: Super efficiency in vector optimization. Trans. Am. Math. Soc. 338, 105–122 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zheng, X.Y.: Proper efficiency in locally convex topological vector spaces. J. Optim. Theory Appl. 94, 469–486 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zhou, Z.A., Yang, X.M., Peng, J.W.: \(\epsilon \)-Henig proper efficiency of set-valued optimization problems in real ordered linear spaces, Optim. Lett. (2013). doi:10.1007/s11590-013-0667-9.

  8. Li, Z.M.: The optimality conditions for vector optimization of set-valued maps. J. Math. Anal. Appl. 237, 413–424 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Adán, M., Novo, V.: Proper efficiency in vector optimization on real linear spaces. J. Optim. Theory Appl. 121, 515–540 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hernández, E., Jiménez, B., Novo, V.: Weak and proper efficiency in set-valued optimization on real linear spaces. J. Convex. Anal. 14, 275–296 (2007)

    MATH  MathSciNet  Google Scholar 

  11. Rong, W.D., Wu, Y.N.: \(\epsilon \)-Weak minimal solutions of vector optimization problems with set-valued maps. J. Optim. Theory Appl. 106, 569–579 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, T.Y., Xu, Y.H., Zhu, C.X.: \(\varepsilon \)-Strictly efficient solutions of vector optimization problems with set-valued maps. Asia Pac. J. Oper. Res. 24, 841–854 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Tuan, L.A.: \(\varepsilon \)-Optimality conditions for vector optimization problems with set-valued maps. Numer. Func. Anal. Optim. 31, 78–95 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zhou, Z.A., Peng, J.W.: Scalarization of set-valued optimization problems with generalized cone subconvexlikeness in real ordered linear spaces. J. Optim. Theory Appl. 154, 830–841 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhou, Z.A., Yang, X.M., Peng, J.W.: \(\epsilon \)-optimality conditions of vector optimization problems with set-valued maps based on the algebraic interior in real linear spaces. Optim. Lett. 8, 1047–1061 (2014)

  16. Tiel, J.V.: Convex Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  17. Adán, M., Novo, V.: Weak efficiency in vector optimization using a closure of algebraic type under cone-convexlikeness. Eur. J. Oper. Res. 149, 641–653 (2003)

    Article  MATH  Google Scholar 

  18. Shi, S.Z.: Convex Analysis. Shanghai Science and Technology Press, Shanghai (1990)

    Google Scholar 

  19. Xu, D.Z., Yao, Q.L.: Topological Linear Spaces. Lanzhou University Press, Lanzhou (1987)

    Google Scholar 

  20. Huang, Y.W., Li, Z.M.: Optimality condition and Lagrangian multipliers of vector optimization with set-valued maps in linear spaces. Oper. Res. Trans. 5, 63–69 (2001)

    Google Scholar 

  21. Xia, L.Y., Qiu, J.H.: Superefficiency in vector optimization with nearly subconvexlike set-valued maps. J. Optim. Theory Appl. 136, 125–137 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gong, X.H., Fu, W.T., Liu, W.: Super efficiency for a vector equilibrium in locally convex topological vector spaces. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp. 233–252. Kluwer Academic, Netherlands (2000)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (11271391) and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJ130830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Min Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, ZA., Yang, XM. Scalarization of \(\epsilon \)-Super Efficient Solutions of Set-Valued Optimization Problems in Real Ordered Linear Spaces. J Optim Theory Appl 162, 680–693 (2014). https://doi.org/10.1007/s10957-014-0565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0565-z

Keywords

Mathematics Subject Classification (2000)

Navigation