Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Existence and Boundedness of Solutions in Infinite-Dimensional Vector Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This work focuses on the nonemptiness and boundedness of the sets of efficient and weak efficient solutions of a vector optimization problem, where the decision space is a normed space and the image space is a locally convex Hausdorff topological linear space. By studying certain boundedness and coercivity concepts of vector-valued functions and via an asymptotic analysis, we extend to this kind of problems some well-known existence and boundedness results for efficient and weak efficient solutions of multiobjective optimization problems with Pareto or polyhedral orderings. Some of these results are proved under weaker assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, S.: On efficient solutions in vector optimization. J. Optim. Theory Appl. 96, 201–209 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Deng, S.: Characterizations of the nonemptiness and compactness of solutions sets in convex vector optimization. J. Optim. Theory Appl. 96, 123–131 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Deng, S.: Characterizations of the nonemptiness and boundedness of weakly efficient solutions sets of convex vector optimization problems in real reflexive Banach spaces. J. Optim. Theory Appl. 140, 1–7 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Deng, S.: Boundedness and nonemptiness of the efficient solution sets in multiobjective optimization. J. Optim. Theory Appl. 144, 29–42 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Flores-Bazán, F.: Ideal, weakly efficient solutions for vector optimization problems. Math. Progr. Ser. A 93, 453–475 (2002)

    Article  MATH  Google Scholar 

  6. Flores-Bazán, F., Lara, F.: Inner and outer estimates for the solution sets and their asymptotic cones in vector optimization. Optim. Lett. 6, 1233–1249 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Flores-Bazán, F., Vera, C.: Characterization of the nonemptiness and compactness of solution sets in convex and nonconvex vector optimization. J. Optim. Theory Appl. 130, 185–207 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Huang, H.: Characterizations for the nonemptiness and compactness of the set of weakly efficient solutions. Southeast Asian Bull. Math. 29, 895–902 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Huang, X.X., Yang, X.Q.: Characterizations of nonemptiness and compactness of the set of weakly efficient solutions for convex vector optimization and applications. J. Math. Anal. Appl. 264, 270–287 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Huang, X.X., Yang, X.Q., Teo, K.L.: Characterizing nonemptiness and compactness of the solution set of a convex vector optimization problem with cone constraints and applications. J. Optim. Theory Appl. 123, 391–407 (2004)

    Article  MathSciNet  Google Scholar 

  11. López, R., Vera, V.: On the set of weakly efficient minimizers for convex multiobjective programming. Oper. Res. Lett. 36, 651–655 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. MPS/SIAM, Philadelphia (2006)

    Google Scholar 

  13. Baiocchi, C., Buttazzo, G., Gastaldi, F., Tomarelli, F.: General existence theorems for unilateral problems in continuum mechanics. Arch. Ration. Mech. Anal. 100, 149–189 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)

    MATH  Google Scholar 

  15. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (2009)

    MATH  Google Scholar 

  16. Qiu, J.H.: On solidness of polar cones. J. Optim. Theory Appl. 109, 199–214 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Qiu, J.H.: Dual characterization and scalarization for Benson proper efficiency. SIAM J. Optim. 19, 144–162 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)

    MATH  Google Scholar 

  19. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, New Jersey (2002)

    Book  MATH  Google Scholar 

  20. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  21. Isac, G.: Topological Methods in Complementarity Theory. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  22. Hyers, D.H., Isac, G., Rassias, T.M.: Topics in Nonlinear Analysis and Applications. World Scientific, Singapore (1997)

    Book  MATH  Google Scholar 

  23. Jadamba, B., Khan, A.A., Sama, M.: Regularization for state constrained optimal control problems by half spaces based decoupling. Syst. Control Lett. 61, 707–713 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jiménez, B., Novo, V., Sama, M.: An extension of the Basic Constraint Qualification to nonconvex vector optimization problems. J. Glob. Optim. 56, 1755–1771 (2013)

    Article  MATH  Google Scholar 

  25. Combari, C., Laghdir, M., Thibault, L.: Sous-différentiels de fonctions convexes composées. Ann. Sci. Math. Québec 18, 119–148 (1994)

    MATH  MathSciNet  Google Scholar 

  26. Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)

    Book  Google Scholar 

  27. Fan, J.H., Wang, X.G.: Solvability of generalized variational inequality problems for unbounded sets in reflexive Banach spaces. J. Optim. Theory Appl. 143, 59–74 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Goeleven, D.: Noncoercive Variational Problems and Related Results. Longman, Harlow (1996)

    MATH  Google Scholar 

  29. Gutiérrez, C., Jiménez, B., Novo, V.: A set-valued Ekeland’s variational principle in vector optimization. SIAM J. Control Optim. 47, 883–903 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gutiérrez, C., López, R., Novo, V.: Generalized \(\varepsilon \)-quasi-solutions in multiobjective optimization problems: Existence results and optimality conditions. Nonlinear Anal. 72, 4331–4346 (2010)

    Google Scholar 

  31. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. A Hitchhiker’s Guide. Springer, Berlin (2006)

    MATH  Google Scholar 

  32. Jahn, J.: Vector Optimization. Theory Applications, and Extensions. Springer, Berlin (2011)

    MATH  Google Scholar 

  33. Graña Drummond, L.M., Maculan, N., Svaiter, B.F.: On the choice of parameters for the weighting method in vector optimization. Math. Progr. Ser. B 111, 201–216 (2008)

    Article  MATH  Google Scholar 

  34. López, R.: Variational convergence for vector-valued functions and its applications to convex multiobjective optimization. Math. Methods Oper. Res. 78, 1–34 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lucchetti, R.E., Miglierina, E.: Stability for convex vector optimization problems. Optimization 53, 517–528 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Chen, G., Huang, X., Yang, X.: Vector Optimization. Set-Valued and Variational Analysis. Springer, Berlin (2005)

    MATH  Google Scholar 

  37. Brézis, H.: Análisis Funcional. Alianza Editorial, Madrid (1984)

    Google Scholar 

  38. Kim, D.S., Tam, N.N., Yen, N.D.: Solution existence and stability of quadratically constrained convex quadratic programs. Optim. Lett. 6, 363–373 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Flores-Bazán, F.: Existence theory for finite-dimensional pseudomonotone equilibrium problems. Acta Appl. Math. 77, 249–297 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees who have contributed to improve the quality of the paper. This research was partially supported by the Ministerio de Economía y Competitividad (Spain) under project MTM2012-30942 (Gutiérrez and Novo) and Conicyt (Chile) under Proyecto Fondecyt 1100919 (López).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Gutiérrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, C., López, R. & Novo, V. Existence and Boundedness of Solutions in Infinite-Dimensional Vector Optimization Problems. J Optim Theory Appl 162, 515–547 (2014). https://doi.org/10.1007/s10957-014-0541-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0541-7

Keywords

Mathematics Subject Classification ( 2000 )

Navigation