Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Study of the Dual Affine Scaling Continuous Trajectories for Linear Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, a continuous method approach is adopted to study both the entire process and the limiting behaviors of the dual affine scaling continuous trajectories for linear programming. Our approach is different from the method presented by Adler and Monteiro (Adler and Monteiro, Math. Program. 50:29–51, 1991). Many new theoretical results on the trajectories resulting from the dual affine scaling continuous method model for linear programming are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Roos, C., Terlaky, T., Vial, J.-P.: Theory and Algorithms for Linear Optimization. Wiley, Chichester (1997)

    MATH  Google Scholar 

  3. Ye, Y.Y.: Interior Point Algorithms—Theory and Analysis. Wiley, New York (1997)

    Book  MATH  Google Scholar 

  4. Bayer, D.A., Lagarias, J.C.: The nonlinear geometry of linear programming. I Affine and projective scaling trajectories. Trans. Am. Math. Soc. 314, 499–526 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Gonzaga, C.C.: Interior point algorithms for linear programming with inequality constraints. Math. Program., Ser. B 52, 209–225 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. den Hertog, D., Roos, C.: A survey of search directions in interior point methods for linear programming. Math. Program. 52, 481–509 (1991)

    Article  MATH  Google Scholar 

  7. Tsuchiya, T.: Affine scaling algorithm. In: Terlaky, T. (ed.) Interior Point Methods of Mathematical Programming, pp. 35–82. Kluwer Academic, Amsterdam (1996)

    Chapter  Google Scholar 

  8. Bayer, D.A., Lagarias, J.C.: The nonlinear geometry of linear programming. II Legendre transform coordinates and central trajectories. Trans. Am. Math. Soc. 314, 527–581 (1989)

    MathSciNet  MATH  Google Scholar 

  9. Megiddo, N., Shub, M.: Boundary behavior of interior point algorithms for linear programming. Math. Oper. Res. 14, 97–146 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Adler, I., Monteiro, R.D.C.: Limiting behavior of the affine scaling continuous trajectories for linear programming problems. Math. Program. 50, 29–51 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Monteiro, R.D.C.: Convergence and boundary behavior of the projective scaling trajectories for linear programming. Math. Oper. Res. 16, 842–858 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liao, L.-Z., Qi, H.D., Qi, L.Q.: Neurodynamical optimization. J. Glob. Optim. 28, 175–195 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chu, M.T., Lin, M.M.: Dynamical system characterization of the central path and its variants-a revisit. SIAM J. Appl. Dyn. Syst. 10, 887–905 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Stewart, G.W.: On scaled projections and pseudoinverses. Linear Algebra Appl. 112, 189–193 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Todd, M.J.: A Dantzig-Wolfe-like variant of Karmarkar’s interior-point linear programming algorithm. Oper. Res. 38, 1006–1018 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)

    MATH  Google Scholar 

  17. Golub, G.H., Liao, L.-Z.: Continuous methods for extreme and interior eigenvalue problems. Linear Algebra Appl. 415, 31–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  19. Dennis, J.E. Jr., Schnabel, R.B.: Numerical Methods for Unconstrained and Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  20. Tseng, P., Luo, Z.-Q.: On the convergence of the affine-scaling algorithm. Math. Program. 56, 301–319 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Absil, P.-A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16, 531–547 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This author was supported in part by GRF grants HKBU201409 and HKBU201611 from the Research Grant Council of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Zhi Liao.

Additional information

Communicated by Xiao Qi Yang.

The author would like to thank two anonymous referees and the editor for their helpful comments and suggestions on the earlier version of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, LZ. A Study of the Dual Affine Scaling Continuous Trajectories for Linear Programming. J Optim Theory Appl 163, 548–568 (2014). https://doi.org/10.1007/s10957-013-0495-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0495-1

Keywords

Navigation