Abstract
A quasivariational inequality is a variational inequality in which the constraint set depends on the variable. Based on fixed point techniques, we prove various existence results under weak assumptions on the set-valued operator defining the quasivariational inequality, namely quasimonotonicity and lower or upper sign-continuity. Applications to quasi-optimization and traffic network are also considered.
Similar content being viewed by others
References
Aussel, D., Hadjisavvas, N.: On quasimonotone variational inequalities. J. Optim. Theory Appl. 121, 445–450 (2004)
Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I, II. Springer, New York (2003)
Adly, S., Bergounioux, M., Ait Mansour, M.: Optimal control of a quasi-variational obstacle problem. J. Glob. Optim. 47, 421–435 (2010)
Kien, B.T., Wong, N.C., Yao, J.C.: On the solution existence of generalized quasivariational inequalities with discontinuous multifunctions. J. Optim. Theory Appl. 135, 515–530 (2007)
Tan, N.X.: Quasi-variational inequality in topological linear locally convex Hausdorff spaces. Math. Nachr. 122, 231–245 (1985)
Georgiev, P., Pardalos, P.: Generalized Nash equilibrium problems for lower semi-continuous strategy maps. J. Glob. Optim. 50, 119–125 (2011)
Aussel, D., Cotrina, J.: Stability of quasimonotone variational inequalities under sign-continuity. Preprint (2011). 17 pp
Runde, V.: A Taste of Topology, Universitext. Springer, New York (2005). x+176 pp
Hadjisavvas, N.: Continuity and maximality properties of pseudomonotone operators. J. Convex Anal. 10, 459–469 (2003)
Aussel, D., Hadjisavvas, N.: Adjusted sublevel sets, normal operator and quasiconvex programming. SIAM J. Optim. 16, 358–367 (2005)
Fichera, G.: Problemi elastostatici con vincoli unilaterali; il problema di Signorini con ambigue al contorno. Atti Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat., Sez. I 8, 91–140 (1964)
Stampacchia, G.: Formes bilinéaires coercitives sur le ensembles convexes C. R. Acad. Sci. (Paris), 4413–4416 (1964)
Browder, F.E.: Multivalued monotone nonlinear mappings and duality mappings in Banach spaces. Trans. Am. Math. Soc. 71, 780–785 (1965)
Debrunner, H., Flor, P.: Ein Erweiterungssatz für monotone Mengen. Arch. Math. 15, 445–447 (1964)
Aussel, D., Cotrina, J.: Semicontinuity of the solution map of quasivariational inequalities. J. Glob. Optim. 50, 93–105 (2011)
Daniilidis, A., Hadjisavvas, N.: Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions. J. Optim. Theory Appl. 102, 525–536 (1999)
Giannessi, F., Mastroeni, G., Pellegrini, L.: On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation. (English Summary) Vector Variational Inequalities and Vector Equilibria. Nonconvex Optim. Appl., vol. 38, pp. 153–215. Kluwer Academic, Dordrecht (2000)
Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177–211 (2010)
Aussel, D., Eberhard, A.: Maximal quasimonotonicity and dense single-directional properties of quasimonotone operators. Math. Program. (to appear). 28 pp
Aussel, D., Ye, J.J.: Quasiconvex programming with locally starshaped constraint region and applications to quasiconvex MPEC. Optimization 55, 433–457 (2006)
Aussel, D., Ye, J.J.: Quasiconvex minimization on locally finite union of convex sets. J. Optim. Theory Appl. 139, 1–16 (2008)
Hadjisavvas, N.: Generalized convexity, generalized monotonicity and nonsmooth analysis. In: Hadjisavvas, N., Komlosi, S., Schaible, S. (eds.) Handbook on Generalized Convexity and Generalized Monotonicity. Kluwer Academic, Dordrecht (2005)
Borde, J., Crouzeix, J.P.: Continuity properties of the normal cone to the level sets of a quasiconvex function. J. Optim. Theory Appl. 66, 415–429 (1990)
Aussel, D., Dutta, J.: Generalized Nash equilibrium problem, variational inequality and quasiconvexity. Oper. Res. Lett. 36, 461–464 (2008)
Crouzeix, J.P., Eberhard, A.: Existence of closed graph, maximal cyclic pseudo-monotone relations and revealed preference theory. J. Ind. Manag. Optim. 3, 233–255 (2007)
Nagurney, A., Parkes, D., Daniele, P.: The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox. Comput. Manag. Sci. 4, 355–375 (2007)
Raciti, F., Scrimali, L.: Time-dependent variational inequalities and applications to equilibrium problems. J. Glob. Optim. 28, 387–400 (2004)
Aussel, D., Cotrina, J.: Existence of time-dependent traffic equilibria. Appl. Anal. 91, 1775–1791 (2012)
Barbagallo, A.: Regularity results for evolutionary nonlinear variational and quasi-variational inequalities with applications to dynamic equilibrium problems. J. Glob. Optim. 40, 29–39 (2008)
Acknowledgement
The authors would like to thank Nicolas Hadjisavvas for providing elements leading to statement of Proposition 4.3. Thanks are also addressed to the referees for their valuable comments which helped improve the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Igor Konnov.
Rights and permissions
About this article
Cite this article
Aussel, D., Cotrina, J. Quasimonotone Quasivariational Inequalities: Existence Results and Applications. J Optim Theory Appl 158, 637–652 (2013). https://doi.org/10.1007/s10957-013-0270-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-013-0270-3