Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Quasimonotone Quasivariational Inequalities: Existence Results and Applications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A quasivariational inequality is a variational inequality in which the constraint set depends on the variable. Based on fixed point techniques, we prove various existence results under weak assumptions on the set-valued operator defining the quasivariational inequality, namely quasimonotonicity and lower or upper sign-continuity. Applications to quasi-optimization and traffic network are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aussel, D., Hadjisavvas, N.: On quasimonotone variational inequalities. J. Optim. Theory Appl. 121, 445–450 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I, II. Springer, New York (2003)

    Google Scholar 

  3. Adly, S., Bergounioux, M., Ait Mansour, M.: Optimal control of a quasi-variational obstacle problem. J. Glob. Optim. 47, 421–435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kien, B.T., Wong, N.C., Yao, J.C.: On the solution existence of generalized quasivariational inequalities with discontinuous multifunctions. J. Optim. Theory Appl. 135, 515–530 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tan, N.X.: Quasi-variational inequality in topological linear locally convex Hausdorff spaces. Math. Nachr. 122, 231–245 (1985)

    Article  MathSciNet  Google Scholar 

  6. Georgiev, P., Pardalos, P.: Generalized Nash equilibrium problems for lower semi-continuous strategy maps. J. Glob. Optim. 50, 119–125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aussel, D., Cotrina, J.: Stability of quasimonotone variational inequalities under sign-continuity. Preprint (2011). 17 pp

  8. Runde, V.: A Taste of Topology, Universitext. Springer, New York (2005). x+176 pp

    Google Scholar 

  9. Hadjisavvas, N.: Continuity and maximality properties of pseudomonotone operators. J. Convex Anal. 10, 459–469 (2003)

    Google Scholar 

  10. Aussel, D., Hadjisavvas, N.: Adjusted sublevel sets, normal operator and quasiconvex programming. SIAM J. Optim. 16, 358–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fichera, G.: Problemi elastostatici con vincoli unilaterali; il problema di Signorini con ambigue al contorno. Atti Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat., Sez. I 8, 91–140 (1964)

    MathSciNet  Google Scholar 

  12. Stampacchia, G.: Formes bilinéaires coercitives sur le ensembles convexes C. R. Acad. Sci. (Paris), 4413–4416 (1964)

  13. Browder, F.E.: Multivalued monotone nonlinear mappings and duality mappings in Banach spaces. Trans. Am. Math. Soc. 71, 780–785 (1965)

    MathSciNet  MATH  Google Scholar 

  14. Debrunner, H., Flor, P.: Ein Erweiterungssatz für monotone Mengen. Arch. Math. 15, 445–447 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Aussel, D., Cotrina, J.: Semicontinuity of the solution map of quasivariational inequalities. J. Glob. Optim. 50, 93–105 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daniilidis, A., Hadjisavvas, N.: Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions. J. Optim. Theory Appl. 102, 525–536 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giannessi, F., Mastroeni, G., Pellegrini, L.: On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation. (English Summary) Vector Variational Inequalities and Vector Equilibria. Nonconvex Optim. Appl., vol. 38, pp. 153–215. Kluwer Academic, Dordrecht (2000)

    Book  Google Scholar 

  18. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Aussel, D., Eberhard, A.: Maximal quasimonotonicity and dense single-directional properties of quasimonotone operators. Math. Program. (to appear). 28 pp

  20. Aussel, D., Ye, J.J.: Quasiconvex programming with locally starshaped constraint region and applications to quasiconvex MPEC. Optimization 55, 433–457 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Aussel, D., Ye, J.J.: Quasiconvex minimization on locally finite union of convex sets. J. Optim. Theory Appl. 139, 1–16 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hadjisavvas, N.: Generalized convexity, generalized monotonicity and nonsmooth analysis. In: Hadjisavvas, N., Komlosi, S., Schaible, S. (eds.) Handbook on Generalized Convexity and Generalized Monotonicity. Kluwer Academic, Dordrecht (2005)

    Chapter  Google Scholar 

  23. Borde, J., Crouzeix, J.P.: Continuity properties of the normal cone to the level sets of a quasiconvex function. J. Optim. Theory Appl. 66, 415–429 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Aussel, D., Dutta, J.: Generalized Nash equilibrium problem, variational inequality and quasiconvexity. Oper. Res. Lett. 36, 461–464 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Crouzeix, J.P., Eberhard, A.: Existence of closed graph, maximal cyclic pseudo-monotone relations and revealed preference theory. J. Ind. Manag. Optim. 3, 233–255 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nagurney, A., Parkes, D., Daniele, P.: The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox. Comput. Manag. Sci. 4, 355–375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Raciti, F., Scrimali, L.: Time-dependent variational inequalities and applications to equilibrium problems. J. Glob. Optim. 28, 387–400 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Aussel, D., Cotrina, J.: Existence of time-dependent traffic equilibria. Appl. Anal. 91, 1775–1791 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Barbagallo, A.: Regularity results for evolutionary nonlinear variational and quasi-variational inequalities with applications to dynamic equilibrium problems. J. Glob. Optim. 40, 29–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Nicolas Hadjisavvas for providing elements leading to statement of Proposition 4.3. Thanks are also addressed to the referees for their valuable comments which helped improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Aussel.

Additional information

Communicated by Igor Konnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aussel, D., Cotrina, J. Quasimonotone Quasivariational Inequalities: Existence Results and Applications. J Optim Theory Appl 158, 637–652 (2013). https://doi.org/10.1007/s10957-013-0270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0270-3

Keywords

Navigation