Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Numerical Methods for Optimal Dividend Payment and Investment Strategies of Markov-Modulated Jump Diffusion Models with Regular and Singular Controls

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This work focuses on numerical methods for finding optimal dividend payment and investment policies to maximize the present value of the cumulative dividend payment until ruin; the surplus is modeled by a regime-switching jump diffusion process subject to both regular and singular controls. Using the dynamic programming principle, the optimal value function obeys a coupled system of nonlinear integro-differential quasi-variational inequalities. Since the closed-form solutions are virtually impossible to obtain, we use Markov chain approximation techniques to approximate the value function and optimal controls. Convergence of the approximation algorithms are proved. Examples are presented to illustrate the applicability of the numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. De Finetti, B.: Su unimpostazione alternativa della teoria collettiva del rischio. Trans. XVth Int. Congr. Actuar. 2, 433–443 (1957)

    Google Scholar 

  2. Gerber, H.: Games of economic survival with discrete- and continuous-income processes. Oper. Res. 20, 37–45 (1972)

    Article  MATH  Google Scholar 

  3. Gerber, H.: An Introduction to Mathematical Risk Theory. Huebner Foundation Monograph, vol. 8. Distributed by Richard D. Irwin, Homewood, IL (1979)

    MATH  Google Scholar 

  4. Asmussen, S., Taksar, M.: Controlled diffusion models for optimal dividend pay-out. Insur. Math. Econ. 20, 1–15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gerber, H., Shiu, E.: Optimal dividends: analysis with Brownian motion. N. Am. Actuar. J. 8, 1–20 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Azcue, P., Muler, N.: optimal investment policy and dividend payment strategy in an insurance company. Ann. Appl. Probab. 20(4), 1253–1302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hamilton, J.: A new approach to the economic analysis of non-stationary time series. Econometrica 57, 357–384 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang, H., Yin, G.: Ruin probability for a model under Markovian switching regime. In: Probability, Finance and Insurance, pp. 206–217. World Scientific, River Edge (2004)

    Google Scholar 

  9. Jin, Z., Yin, G., Yang, H.L.: Numerical methods for dividend optimization using regime-switching jump-diffusion models. Math. Control Relat. Fields 1, 21–40 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yin, G., Zhu, C.: Hybrid Switching Diffusions: Properties and Applications. Springer, New York (2010)

    Book  Google Scholar 

  11. Kushner, H., Dupuis, P.: Numerical Methods for Stochastic Control Problems in Continuous Time, 2nd edn. Stochastic Modelling and Applied Probability, vol. 24. Springer, New York (2001)

    Book  MATH  Google Scholar 

  12. Budhiraja, A., Ross, K.: Convergent numerical scheme for singular stochastic control with state constraints in a portfolio selection problem. SIAM J. Control Optim. 45(6), 2169–2206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kushner, H.J., Martins, L.F.: Numerical methods for stochastic singular control problems. SIAM J. Control Optim. 29, 1443–1475 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jin, Z., Yin, G., Zhu, C.: Numerical solutions of optimal risk control and dividend optimization policies under a generalized singular control formulation. Automatica 48(8), 1489–1501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lundberg, F.: Approximerad Framställning av Sannolikehetsfunktionen, Aterförsäkering av Kollektivrisker, Almqvist & Wiksell, Uppsala. Akad. Afhandling. Almqvist o. Wiksell, Uppsala (1903)

    Google Scholar 

  16. Fleming, W., Soner, H.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Stochastic Modelling and Applied Probability, vol. 25. Springer, New York (2006)

    MATH  Google Scholar 

  17. Song, Q., Stockbridge, R., Zhu, C.: On optimal harvesting problems in random environments. SIAM J. Control Optim. 49(2), 859–889 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yin, G., Zhang, Q., Badowski, G.: Discrete-time singularly perturbed Markov chains: aggregation, occupation measures, and switching diffusion limit. Adv. Appl. Probab. 35, 449–476 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of Zhuo Jin was supported by the Faculty Research Grant of University of Melbourne. The research of G. Yin was supported in part by the National Science Foundation under DMS-1207667.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Jin.

Additional information

Communicated by Xiao Qi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Z., Yin, G. Numerical Methods for Optimal Dividend Payment and Investment Strategies of Markov-Modulated Jump Diffusion Models with Regular and Singular Controls. J Optim Theory Appl 159, 246–271 (2013). https://doi.org/10.1007/s10957-012-0263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0263-7

Keywords

Navigation