Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Newton–Kantorovich Convergence Theorem of a Modified Newton’s Method Under the Gamma-Condition in a Banach Space

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A Newton–Kantorovich convergence theorem of a modified Newton’s method having third order convergence is established under the gamma-condition in a Banach space to solve nonlinear equations. It is assumed that the nonlinear operator is twice Fréchet differentiable and satisfies the gamma-condition. We also present the error estimate to demonstrate the efficiency of our approach. A comparison of our numerical results with those obtained by other Newton–Kantorovich convergence theorems shows high accuracy of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gutierrez, J.M., Hernandez, M.A.: An acceleration of Newton’s method: Super-Halley method. Appl. Math. Comput. 117, 223–239 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kou, J., Li, Y.T., Wang, X.H.: A modification of Newton method with third-order convergence. Appl. Math. Comput. 181, 1106–1111 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 138, 87–93 (2000)

    Article  MathSciNet  Google Scholar 

  4. Homeier, H.H.H.: On Newton-type methods with cubic convergence. J. Comput. Appl. Math. 176, 425–432 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, X.H.: Convergence on the iteration of Halley family in weak condition. Chin. Sci. Bull. 42, 552–555 (1997)

    Article  MATH  Google Scholar 

  6. Frontini, M., Sormani, E.: Some variant of Newton’s method with third-order convergence. Appl. Math. Comput. 140, 419–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, X.H.: Convergence of Newton’s method and uniqueness of the solution of equations in Banach spaces II. Acta Math. Sin. Engl. Ser. 19, 405–412 (2003)

    Article  MathSciNet  Google Scholar 

  8. Wu, Q.B., Zhao, Y.Q.: Third-order convergence theorem by using majorizing function for a modified Newton method in Banach space. Appl. Math. Comput. 175, 1515–1524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R., Gross, K., Martin, C. (eds.) The Merging of Disciplines: New Directions. Springer, New York (1986)

    Google Scholar 

  10. Wang, X.H., Han, D.F.: Criterion α and Newton method in the weak conditions. Math. Numer. Sin. 19, 103–114 (1997). Chin. J. Numer. Appl. Math., 19, 96–105

    MathSciNet  Google Scholar 

  11. Zhao, Y.Q., Wu, Q.B.: Convergence analysis for a deformed Newton’s method with third-order in Banach space under γ-condition. Int. J. Comput. Math. 86, 441–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kantorovich, L.: On Newton method. Tr. Mat. Inst. Steklova 28, 104–122 (1949) (in Russian)

    Google Scholar 

  13. Gutiérrez, J.M.: A new semilocal convergence theorem for Newton’s method. J. Comput. Appl. Math. 79, 131–145 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Argyros, I.K., Cho, Y.J., Hilout, S.: On the midpoint method for solving equations. Appl. Math. Comput. 216, 2321–2332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Uko, L.U., Argyros, I.K.: A generalized Kantorovich theorem on the solvability of nonlinear equations. Aequ. Math. 77, 99–105 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shen, W.P., Li, C.: Smale’s α-theory for inexact Newton methods under the γ-condition. J. Math. Anal. Appl. 369, 29–42 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wu.

Additional information

Communicated by Ilio Galligani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Khan, Y., Wu, Q. et al. Newton–Kantorovich Convergence Theorem of a Modified Newton’s Method Under the Gamma-Condition in a Banach Space. J Optim Theory Appl 157, 651–662 (2013). https://doi.org/10.1007/s10957-012-0237-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0237-9

Keywords

Navigation