Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Energy Minimizing Mountain Ascent

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this article, an optimal mountain ascent is studied as a particular problem of a human walking over a rugged terrain. First, an approximation of the terrain is constructed using particular smooth splines—macro-elements. Then a functional measuring the energy consumption along boundary curves of a macro-element is defined. Finally, the corresponding discrete problem of finding the optimal path on a mesh of curves is applied. Numerical results on real-life data indicate that computed paths are a good approximation of hiking paths in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm 1
Algorithm 2
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  2. Helbing, D., Keltsch, J., Molnár, P.: Modelling the evolution of human trail systems. Nature 388, 47–49 (1997)

    Article  Google Scholar 

  3. Minetti, A.E.: Optimum gradient of mountain paths. J. Appl. Physiol. 79, 1698–1703 (1995)

    Google Scholar 

  4. Minetti, A.E., Alexander, R.M.: A theory of metabolic costs for bipedal gaits. J. Theor. Biol. 186, 467–476 (1997)

    Article  Google Scholar 

  5. Minetti, A.E., Moia, G., Roi, S., Susta, D., Ferretti, G.: Energy cost of walking and running at extreme uphill and downhill slopes. J. Appl. Physiol. 93, 1039–1046 (2002)

    Google Scholar 

  6. Margaria, R.: Sulla fisiologia e specialmente sul consume energetico della marcia e della corsa a varia velocita ed inclinazione del terreno. Atti Accad. Naz. Lincei, Mem. Lincee, Mat. Appl. 7, 299–368 (1938)

    Google Scholar 

  7. De Smith, M.: GIS, distance, paths and anisotropy. In: Longley, P.A., Batty, M. (eds.) Advanced Spatial Analysis: the CASA Book of GIS, pp. 309–326. ESRI Press, Redlands (2003)

    Google Scholar 

  8. Llobera, M., Sluckin, T.: Zigzagging: Theoretical insights on climbing strategies. J. Theor. Biol. 249(2), 206–217 (2007)

    Article  Google Scholar 

  9. Lai, M.-J., Schumaker, L.L.: Spline Functions on Triangulations. Encyclopedia of Mathematics and Its Applications, vol. 110. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  10. Lai, M.-J., Schumaker, L.L.: Quadrilateral macro-elements. SIAM J. Math. Anal. 33, 1107–1116 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jaklič, G., Žagar, E.: Shape preserving interpolation by cubic G 1 splines in R 3. Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 54(2), 259–267 (2008)

    Article  MATH  Google Scholar 

  12. Wallner, J.: Note on curve and surface energies. Comput. Aided Geom. Des. 24(8–9), 494–498 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Schröter, T., Glöckner, M.-N.: How to climb a mountain? Simulating efficient ways to the mountain top. ECMI Newsl. 46, 31–32 (2009)

    Google Scholar 

  14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  15. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, Algorithms and Applications. Springer, Berlin (1997)

    MATH  Google Scholar 

  16. Farin, G.: Curves and Surfaces for Computer-Aided Geometric Design, 5th edn. Academic Press, New York (2002)

    Google Scholar 

  17. Wolfram Research, Inc.: Mathematica, Version 8.0. Champaign, IL (2010)

Download references

Acknowledgements

Operation partly-financed by the European Union, European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selena Praprotnik.

Additional information

Communicated by Ilio Galligani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaklič, G., Kanduč, T., Praprotnik, S. et al. Energy Minimizing Mountain Ascent. J Optim Theory Appl 155, 680–693 (2012). https://doi.org/10.1007/s10957-012-0088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0088-4

Keywords

Navigation