Abstract
In this article, an optimal mountain ascent is studied as a particular problem of a human walking over a rugged terrain. First, an approximation of the terrain is constructed using particular smooth splines—macro-elements. Then a functional measuring the energy consumption along boundary curves of a macro-element is defined. Finally, the corresponding discrete problem of finding the optimal path on a mesh of curves is applied. Numerical results on real-life data indicate that computed paths are a good approximation of hiking paths in nature.
Similar content being viewed by others
References
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)
Helbing, D., Keltsch, J., Molnár, P.: Modelling the evolution of human trail systems. Nature 388, 47–49 (1997)
Minetti, A.E.: Optimum gradient of mountain paths. J. Appl. Physiol. 79, 1698–1703 (1995)
Minetti, A.E., Alexander, R.M.: A theory of metabolic costs for bipedal gaits. J. Theor. Biol. 186, 467–476 (1997)
Minetti, A.E., Moia, G., Roi, S., Susta, D., Ferretti, G.: Energy cost of walking and running at extreme uphill and downhill slopes. J. Appl. Physiol. 93, 1039–1046 (2002)
Margaria, R.: Sulla fisiologia e specialmente sul consume energetico della marcia e della corsa a varia velocita ed inclinazione del terreno. Atti Accad. Naz. Lincei, Mem. Lincee, Mat. Appl. 7, 299–368 (1938)
De Smith, M.: GIS, distance, paths and anisotropy. In: Longley, P.A., Batty, M. (eds.) Advanced Spatial Analysis: the CASA Book of GIS, pp. 309–326. ESRI Press, Redlands (2003)
Llobera, M., Sluckin, T.: Zigzagging: Theoretical insights on climbing strategies. J. Theor. Biol. 249(2), 206–217 (2007)
Lai, M.-J., Schumaker, L.L.: Spline Functions on Triangulations. Encyclopedia of Mathematics and Its Applications, vol. 110. Cambridge University Press, Cambridge (2007)
Lai, M.-J., Schumaker, L.L.: Quadrilateral macro-elements. SIAM J. Math. Anal. 33, 1107–1116 (2002)
Jaklič, G., Žagar, E.: Shape preserving interpolation by cubic G 1 splines in R 3. Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 54(2), 259–267 (2008)
Wallner, J.: Note on curve and surface energies. Comput. Aided Geom. Des. 24(8–9), 494–498 (2007)
Schröter, T., Glöckner, M.-N.: How to climb a mountain? Simulating efficient ways to the mountain top. ECMI Newsl. 46, 31–32 (2009)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, Algorithms and Applications. Springer, Berlin (1997)
Farin, G.: Curves and Surfaces for Computer-Aided Geometric Design, 5th edn. Academic Press, New York (2002)
Wolfram Research, Inc.: Mathematica, Version 8.0. Champaign, IL (2010)
Acknowledgements
Operation partly-financed by the European Union, European Social Fund.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Ilio Galligani.
Rights and permissions
About this article
Cite this article
Jaklič, G., Kanduč, T., Praprotnik, S. et al. Energy Minimizing Mountain Ascent. J Optim Theory Appl 155, 680–693 (2012). https://doi.org/10.1007/s10957-012-0088-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-012-0088-4