Abstract
To construct an effective minimization algorithm for locally Lipschitz functions, we show how to compute a descent direction satisfying Armijo’s condition. We present a finitely terminating algorithm to construct an approximating set for the Goldstein subdifferential leading to the desired descent direction. Using this direction, we propose a minimization algorithm for locally Lipschitz functions and prove its convergence. Finally, we implement our algorithm with matrix laboratory (MATLAB) codes and report our testing results. The comparative numerical results attest to the efficiency of the proposed algorithm.
Similar content being viewed by others
References
Shor, N.Z.: Minimization Methods for Non-differentiable Functions. Springer, Berlin (1985)
Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 13(1), 117–156 (2002)
Fuduli, A., Gaudioso, M., Giallombardo, G.: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control. SIAM J. Optim. 14(3), 743–756 (2003)
Fuduli, A., Gaudioso, M., Giallombardo, G.: A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization. Optim. Methods Softw. 19(1), 89–102 (2004)
Gaudioso, M., Gorgone, E., Monaco, M.F.: Piecewise linear approximations in nonconvex nonsmooth optimization. Numer. Math. 113(1), 73–88 (2009)
Gaudioso, M., Monaco, M.F.: A bundle type approach to the unconstrained minimization of convex nonsmooth functions. Math. Program. 23(2), 216–226 (1982)
Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods. Springer, Berlin (1993)
Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics, vol. 1133. Springer, Berlin (1985)
Makela, M.M., Neittaanmaki, P.: Nonsmooth Optimization. World Scientific, Singapore (1992)
Mifflin, R.: An algorithm for constrained optimization with semismooth functions. Math. Oper. Res. 2(2), 191–207 (1977)
Wolfe, P.H.: A method of conjugate subgradients of minimizing nondifferentiable convex functions. Math. Program. Stud. 3, 145–173 (1975)
Mayne, D.Q., Polak, E.: Nondifferential optimization via adaptive smoothing. J. Optim. Theory Appl. 43, 19–30 (1984)
Polak, E., Royset, J.O.: Algorithms for finite and semi-infinite min-max-min problems using adaptive smoothing techniques. J. Optim. Theory Appl. 119(3), 421–457 (2003)
Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math. Program. 116(1–2), 221–258 (2009)
Hare, W., Sagastizábal, C.: A VU-algorithm for convex minimization. Math. Program. 104(2–3), 583–608 (2005)
Kaplan, A., Tichatschke, R.: Proximal point methods and nonconvex optimization. J. Glob. Optim. 13(4), 389–406 (1998)
Bagirov, A.M.: Continuous subdifferential approximations and their applications. J. Math. Sci. 115, 2567–2609 (2003)
Bagirov, A.M., Karasözen, B., Sezer, M.: Discrete gradient method: derivative-free method for nonsmooth optimization. J. Optim. Theory Appl. 137(2), 317–334 (2008)
Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15, 571–779 (2005)
Kiwiel, K.C.: Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 18(2), 379–388 (2007)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics, Philadelphia (1987)
Goldstein, A.A.: Optimization of Lipschitz continuous functions. Math. Program. 13, 14–22 (1977)
Bertsekas, D.P., Mitter, S.K.: A descent numerical method for optimization problems with nondifferentiable cost functionals. SIAM J. Optim. 11, 637–652 (1973)
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)
Bruke, J.V., Lewis, A.S., Overton, M.L.: Approximating subdifferential by random sampling of gradient. Math. Oper. Res. 27, 576–584 (2002)
Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 959–972 (1977)
Daugavet, V.A.: Modification of the Wolfe method. Zh. Vychisl. Mat. Mat. Fiz. 21, 504–508 (1981)
Mitchell, B.F., Demyanov, V.F., Malozemov, V.N.: Finding the point of a polyhedron closest to the origin. SIAM J. Control Optim. 12, 19–26 (1974)
Wolfe, P.: Finding the nearest point in a polytope. Math. Program. 11, 128–149 (1976)
Anstreicher, K.M., Lee, J.: A masked spectral bound for maximum-entropy sampling. In: mODa 7—Advances in Model-Oriented Design and Analysis. Contributions to Statistics, pp. 1–12. Physica, Heidelberg (2004)
Trefethen, L.N.: Pseudospectra of linear operators. SIAM Rev. 39, 383–406 (1997)
Bruke, J.V., Lewis, A.S., Overton, M.L.: Robust stability and a criss-cross algorithm for pseudospectra. SIAM J. Numer. Anal. 23, 359–375 (2003)
Acknowledgements
The first author thanks the Research Council of Sharif University of Technology for supporting this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Vladimir F. Dem’yanov.
Rights and permissions
About this article
Cite this article
Mahdavi-Amiri, N., Yousefpour, R. An Effective Nonsmooth Optimization Algorithm for Locally Lipschitz Functions. J Optim Theory Appl 155, 180–195 (2012). https://doi.org/10.1007/s10957-012-0024-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-012-0024-7