Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Hull-Volume with Applications to Convergence Analysis

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We introduce and study decompositions of finite sets as well as coverings of their convex hulls, and use these objects to develop various estimates of and formulas for the “hull-volume” of the sets (i.e., the volume of their convex hull). We apply our results to the convergence analysis of the “iterate-sets” associated with each iteration of a reduce-or-retreat optimization method (including pattern-search methods like Nelder–Mead as well as model-based methods).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levy, A.B.: Descent and convergence in reduce-or-retreat optimization methods. Preprint (2011)

  2. McKinnon, K.I.M.: Convergence of the Nelder–Mead simplex method to a nonstationary point. SIAM J. Optim. 9, 148–158 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grünbaum, B.: Convex Polytopes. Wiley, New York (1967)

    MATH  Google Scholar 

  4. Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995)

    Book  MATH  Google Scholar 

  5. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  6. Thomas, R.: Lectures in Geometric Combinatorics. The American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  7. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Martini, H.: A new view on some characterizations of simplices. Arch. Math. 55, 389–393 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lee, C.W.: Regular Triangulations of Convex Polytopes. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 443–456. Am. Math. Soc., Providence (1991)

    Google Scholar 

  10. Lawrence, J.: Polytope volume computation. Math. Comput. 57, 259–271 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Allgower, E.L., Schmidt, P.H.: Computing volumes of polyhedra. Math. Comput. 46, 171–174 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lasserre, J.B.: An analytical expression and an algorithm for the volume of a convex polyhedron in ℝn. J. Optim. Theory Appl. 39, 363–377 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, J., Hickey, T.: Two algorithms for determining volumes of convex polyhedra. J. Assoc. Comput. Mach. 26, 401–414 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. von Hohenbalken, B.: Finding simplicial subdivisions of polytopes. Math. Program. 21, 233–234 (1981)

    Article  MATH  Google Scholar 

  15. Scheinberg, K., Toint, Ph.L.: Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization. SIAM J. Optim. 20, 3512–3532 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam B. Levy.

Additional information

Communicated by Horst Martini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, A.B. Hull-Volume with Applications to Convergence Analysis. J Optim Theory Appl 153, 633–649 (2012). https://doi.org/10.1007/s10957-011-9959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9959-3

Keywords

Navigation