Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We investigate a global complexity bound of the Levenberg–Marquardt Method (LMM) for nonsmooth equations. The global complexity bound is an upper bound to the number of iterations required to get an approximate solution that satisfies a certain condition. We give sufficient conditions under which the bound of the LMM for nonsmooth equations is the same as smooth cases. We also show that it can be reduced under some regularity assumption. Furthermore, by applying these results to nonsmooth equations equivalent to the nonlinear complementarity problem (NCP), we get global complexity bounds for the NCP. In particular, we give a reasonable bound when the mapping involved in the NCP is a uniformly P-function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  2. Facchinei, F., Kanzow, C.: A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math. Program., Ser. A 76, 493–512 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Jiang, H., Ralph, D.: Global and local superlinear convergence analysis of Newton-type methods for semismooth equations with smooth least squares. In: Fukushima, M., Qi, L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 181–209. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  4. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. J. Comput. Appl. Math. 173, 321–343 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Ma, C., Tang, J.: The quadratic convergence of a smoothing Levenberg-Marquardt method for nonlinear complementarity problem. Appl. Math. Comput. 197, 566–581 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ma, C., Tang, J., Chen, X.: A globally convergent Levenberg-Marquardt method for solving nonlinear complementarity problem. Appl. Math. Comput. 192, 370–381 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sabramanian, P.K.: Gauss-Newton methods for the complementarity problem. J. Optim. Theory Appl. 77, 467–482 (1993)

    Article  MathSciNet  Google Scholar 

  8. Zhang, J., Zhang, X.: A smoothing Levenberg-Marquardt method for NCP. Appl. Math. Comput. 178, 212–228 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Cartis, C., Gould, N.I.M., Toint, P.L.: On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization problems. Technical Report 09/14, Department of Mathematics, FUNDP—University of Namur (2009)

  10. Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularization methods for unconstrained optimization. PartII: worst-case function- and derivative-evaluation complexity. Math. Program. doi:10.1007/s10107-009-0337-y

  11. Gratton, S., Sartenaer, A., Toint, P.L.: Recursive trust-region methods for multiscale nonlinear optimization. SIAM J. Optim. 19, 414–444 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nesterov, Yu.: Introductory Lectures on Convex Optimization. Kluwer Academic, Dordrecht (2004)

    MATH  Google Scholar 

  13. Nesterov, Yu.: Accelerating the cubic regularization of Newton’s method on convex problems. Math. Program., Ser. B 112, 159–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nesterov, Yu., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Math. Program., Ser. A 108, 177–205 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Polyak, R.A.: Regularized Newton method for unconstrained convex optimization. Math. Program., Ser. B 120, 125–145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ueda, K., Yamashita, N.: Convergence properties of the regularized Newton method for the unconstrained nonconvex optimization. Appl. Math. Optim. 62, 27–46 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ueda, K., Yamashita, N.: On a global complexity bound of the Levenberg-Marquardt method. J. Optim. Theory Appl. 147, 443–453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1983)

    MATH  Google Scholar 

  19. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program., Ser. A 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hogan, W.W.: Point-to-set maps in mathematical programming. SIAM Rev. 15, 591–603 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Numerical Analysis. Lecture Notes in Mathematics, vol. 630, pp. 105–116 (1978)

    Chapter  Google Scholar 

  23. Osborne, M.R.: Nonlinear least squares—the Levenberg algorithm revisited. J. Aust. Math. Soc. 19, 343–357 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Facchinei, F., Soares, J.: A new merit function for nonlinear complementarity problems and a related algorithm. SIAM J. Optim. 7, 225–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, J.-S.: The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem. J. Glob. Optim. 36, 565–580 (2006)

    Article  MATH  Google Scholar 

  27. Chen, B., Chen, X., Kanzow, C.: A penalized Fischer-Burmeister NCP-function. Math. Program., Ser. A 88, 211–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiang, H., Qi, L.: A new nonsmooth equations approach to nonlinear complementarity problems. SIAM J. Control Optim. 35, 178–193 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kanzow, C., Fukushima, M.: Equivalence of the generalized complementarity problem to differentiable unconstrained minimization. J. Optim. Theory Appl. 90, 581–603 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moré, J.J.: Classes of functions and feasibility conditions in nonlinear complementarity problems. Math. Program., Ser. A 6, 327–338 (1974)

    Article  MATH  Google Scholar 

  31. Luca, T.D., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program., Ser. A 75, 407–439 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Ueda.

Additional information

Communicated by Ilio Galligani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, K., Yamashita, N. Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem. J Optim Theory Appl 152, 450–467 (2012). https://doi.org/10.1007/s10957-011-9907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9907-2

Keywords

Navigation