Abstract
A mathematical model is introduced which describes the dissipation of electrons in lightly doped semi-conductors. The dissipation operator is proved to be densely defined and positive and to generate a Markov semigroup of operators. The spectrum of the dissipation operator is studied and it is shown that zero is a simple eigenvalue, which makes the equilibrium state unique. Also it is shown that there is a gap between zero and the rest of its spectrum which makes the return to equilibrium exponentially fast in time.
Similar content being viewed by others
Notes
It should actually be given by the Bose-Einstein distribution (e βε−1)−1. But if βε≫1 it follows that (e βε−1)−1≈e −βε.
References
Albeverio, S., Höegh-Krøhn, R.: Dirichlet forms and Markovian semigroups on C ∗-algebras. Commun. Math. Phys. 56, 173–187 (1977)
Ambegaokar, V., Halperin, B.I., Langer, J.S.: Hopping conductivity in disordered systems. Phys. Rev. B 4, 2612–2620 (1971)
Araki, H.: Some properties of modular conjugation operator of von Neumann algebras and a non commutative Radon-Nykodim theorem with a chain rule. Pac. J. Math. 50, 309–354 (1974)
Bellissard, J., Schulz-Baldes, H., van Elst, A.: The non commutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5471 (1994)
Bellissard, J.: Coherent and dissipative transport in aperiodic solids. In: Garbaczewski, P., Olkiewicz, R. (eds.) Dynamics of Dissipation. Lecture Notes in Physics, vol. 597, pp. 413–486. Springer, Berlin (2003)
Bellissard, J., Rebolledo, R., Spehner, D., von Waldenfels, W.: The quantum flow of electronic transport I: The finite volume case (Unpublished paper). It can be found on the mp-arc website http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=02-212
Bernasconi, J.: Electric conductivity in disordered systems. Phys. Rev. B 7, 2252–2260 (1973)
Beurling, A., Deny, J.: Espaces de Dirichlet. I. Le cas élémentaire. Acta Math. 99, 203–224 (1958) (in French)
Beurling, A., Deny, J.: Dirichlet spaces. Proc. Natl. Acad. Sci. 45, 208–215 (1959)
Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, I: C∗- and W∗-algebras, algebras, symmetry groups, decomposition of states. In: Texts and Monographs in Physics. Springer, New York-Heidelberg (1979)
Bratteli, O., Robinson, D.W.: Operator algebras and quantum-statistical mechanics, II: Equilibrium states. In: Models in Quantum-Statistical Mechanics. Texts and Monographs in Physics. Springer, New York-Berlin (1981)
Caputo, P., Faggionato, A.: Diffusivity in one-dimensional generalized Mott variable-range hopping models. Ann. Appl. Probab. 19(4), 1459–1494 (2009)
Cipriani, F.: Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras. J. Funct. Anal. 147, 259–300 (1997)
Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photon and Atoms: Introduction to Quantum Electrodynamics. Wiley, New York (2004)
Connes, A.: Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann. Ann. Inst. Fourier 24, 121–155 (1974)
Connes, A.: Sur la théorie non commutative de l’intégration. In: Algèbres d’opérateurs (Séminaire Les Plans-sur-Bex, 1978). Lecture Notes in Math., vol. 725, pp. 19–143. Springer, Berlin (1979) (in French)
Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994)
Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London-New York (1976)
Dixmier, J.: Les C∗-algèbres et leurs représentations, 2ième édn. Cahiers Scientifiques, Fasc. XXIX. Gauthier-Villars, Paris (1969) (in French)
Eggarter, T.P., Cohen, M.H.: Simple model for density of states and mobility of an electron in a gas of hard-core scatterers. Phys. Rev. Lett. 25, 807–810 (1971)
Faggionato, A., Mathieu, P.: Mott law as upper bound for a random walk in a random environment. Commun. Math. Phys. 281, 263–286 (2008)
Faggionato, A., Schulz-Baldes, H., Spehner, D.: Mott law as lower bound for a random walk in a random environment. Commun. Math. Phys. 263, 21–64 (2006)
Fukushima, M.: Dirichlet Forms and Markov Processes. North-Holland, Amsterdam (1980)
Haag, R., Hugenholtz, N.M., Winning, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215–236 (1967)
Hastings, M.B.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)
Hastings, M.B.: Locality in quantum and Markov dynamics on lattices and networks. Phys. Rev. Lett. 93, 140402 (2004)
Hastings, M.B., Koma, T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781–804 (2006). arXiv:0507.4708 [math-ph]
Hill, R.M.: On the observation of variable range hopping. Phys. Status Solidi A 35, K29–K34 (1976)
Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. I. Elementary Theory. Pure and Applied Mathematics, vol. 100. Academic Press, New York (1983)
Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition
Kirkpatrick, S.: Classical transport in disordered media: scaling and effective-medium theories. Phys. Rev. Lett. 27, 1722–1725 (1971)
Kubo, R.: Statistical-mechanical theory of irreversible processes, I. J. Phys. Soc. Jpn. 12, 570–586 (1957)
Last, B.J., Thouless, D.J.: Percolation theory and electrical conductivity. Phys. Rev. Lett. 27, 1719–1721 (1971)
Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)
Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)
Mahan, G.: Many Particles Physics, 2nd printing. Plenum, New York (1990)
Martin, P.C., Schwinger, J.: Theory of many-particle systems, I. Phys. Rev. 115, 1342–1373 (1959)
Miller, A., Abrahams, E.: Impurity conduction at low concentration. Phys. Rev. 120, 745–755 (1960)
Mott, N.F.: J. Non-Cryst. Solids 1, 1 (1968)
Mott, N.F.: Metal-Insulator Transitions. Taylor & Francis, London (1974)
Mott, N.F., Pepper, M., Pollitt, S., Wallis, R.H., Adkins, C.J.: The Anderson transition. Proc. R. Soc. Lond. A 345, 169–205 (1975)
Nachtergaele, B., Vershynina, A., Zagrebnov, V.: Lieb-Robinson bounds and existence of the thermodynamic limit for a class of irreversible quantum dynamics. Preprint. arXiv:1103.1122v2 (2011)
Prange, R., Girvin, S. (eds.): The Quantum Hall Effect. Springer, Berlin (1990)
Pollak, M.: A percolation treatment of dc-hopping conduction. J. Non-Cryst. Solids 11, 1–24 (1972)
Polyakov, D.G., Shklovskii, B.I.: Variable range hopping as the mechanism of the conductivity peak broadening in the quantum Hall regime. Phys. Rev. Lett. 70, 3796–3799 (1993)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vols. I–IV. Academic Press, London (1975)
Renault, J.: A Groupoid Approach to C ∗-Algebras. Lecture Notes in Math., vol. 793. Springer, Berlin (1980)
Shklovskii, B., Efros, A.: Electronic Properties of Doped Semiconductors. Springer, Berlin (1984)
Slater, J.C.: Electrons in perturbed periodic potentials. Phys. Rev. 76, 1592–1601 (1949)
Spehner, D.: Contributions à la théorie du transport électronique dissipatif dans les solides apériodiques. Accessible at http://www-fourier.ujf-grenoble.fr/~spehner (in French)
Spehner, D., Bellissard, J.: J. Stat. Phys. 104, 525–566 (2001)
Spehner, D., Bellissard, J.: The quantum jumps approach for infinitely many states. In: Modern Challenges in Quantum Optics (Santiago, 2000). Lecture Notes in Phys., vol. 575, pp. 355–376. Springer, Berlin (2001)
Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53, 569–615 (1980)
Stinespring, W.F.: Positive functions on C ∗-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)
Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and Its Applications. Lecture Notes in Mathematics, vol. 128. Springer, Berlin-New York (1970)
Takesaki, M.: Theory of Operator Algebras. I. Springer, New York-Heidelberg (1979)
Takesaki, M.: Theory of Operator Algebras. II. Operator Algebras and Non-commutative Geometry, vol. 6. Encyclopaedia of Mathematical Sciences, vol. 125. Springer, Berlin (2003)
Tomiyama, J.: On the projection of norm one in W∗-algebras. II. Tôhoku Math. J. 10, 204–209 (1958)
Tomiyama, J.: Topological representation of C∗-algebras. Tôhoku Math. J. 14, 187–204 (1962)
Tomiyama, J.: A characterization of C∗-algebras whose conjugate spaces are separable. Tôhoku Math. J. 15, 96–102 (1963)
Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)
Quotations by John von Neumann at: http://www-groups.dcs.st-and.ac.uk/~history
Wannier, G.H.: The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937)
Zabrodskii, A.G.: Hopping conduction and density of localized states near the Fermi level. Fiz. Tekh. Poluprov. 11, 595 (1977). English translation in Sov. Phys.-Semicond. 11, 345 (1977)
Ziman, J.M.: Hopping conductivity in disordered systems. J. Phys. C 1, 1532–1538 (1968)
Acknowledgements
This work benefited from the NSF grants DMS-0600956 and DMS-0901514. Part of this work was done in Bielefeld with the support of the SFB 701 “Spectral Structures and Topological Methods in Mathematics” during the Summers 2009 and 2010. G.A. and C.S. thank the School of Mathematics at the Georgia Institute of Technology for support during the Spring 2009.
Author information
Authors and Affiliations
Corresponding author
Additional information
J. Bellissard and C. Sadel were supported by NSF grants DMS-0600956 and DMS-0901514.
Rights and permissions
About this article
Cite this article
Androulakis, G., Bellissard, J. & Sadel, C. Dissipative Dynamics in Semiconductors at Low Temperature. J Stat Phys 147, 448–486 (2012). https://doi.org/10.1007/s10955-012-0454-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-012-0454-5