Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Dissipative Dynamics in Semiconductors at Low Temperature

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A mathematical model is introduced which describes the dissipation of electrons in lightly doped semi-conductors. The dissipation operator is proved to be densely defined and positive and to generate a Markov semigroup of operators. The spectrum of the dissipation operator is studied and it is shown that zero is a simple eigenvalue, which makes the equilibrium state unique. Also it is shown that there is a gap between zero and the rest of its spectrum which makes the return to equilibrium exponentially fast in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. It should actually be given by the Bose-Einstein distribution (e βε−1)−1. But if βε≫1 it follows that (e βε−1)−1e βε.

References

  1. Albeverio, S., Höegh-Krøhn, R.: Dirichlet forms and Markovian semigroups on C -algebras. Commun. Math. Phys. 56, 173–187 (1977)

    Article  ADS  MATH  Google Scholar 

  2. Ambegaokar, V., Halperin, B.I., Langer, J.S.: Hopping conductivity in disordered systems. Phys. Rev. B 4, 2612–2620 (1971)

    Article  ADS  Google Scholar 

  3. Araki, H.: Some properties of modular conjugation operator of von Neumann algebras and a non commutative Radon-Nykodim theorem with a chain rule. Pac. J. Math. 50, 309–354 (1974)

    MathSciNet  MATH  Google Scholar 

  4. Bellissard, J., Schulz-Baldes, H., van Elst, A.: The non commutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5471 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bellissard, J.: Coherent and dissipative transport in aperiodic solids. In: Garbaczewski, P., Olkiewicz, R. (eds.) Dynamics of Dissipation. Lecture Notes in Physics, vol. 597, pp. 413–486. Springer, Berlin (2003)

    Chapter  Google Scholar 

  6. Bellissard, J., Rebolledo, R., Spehner, D., von Waldenfels, W.: The quantum flow of electronic transport I: The finite volume case (Unpublished paper). It can be found on the mp-arc website http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=02-212

  7. Bernasconi, J.: Electric conductivity in disordered systems. Phys. Rev. B 7, 2252–2260 (1973)

    Article  ADS  Google Scholar 

  8. Beurling, A., Deny, J.: Espaces de Dirichlet. I. Le cas élémentaire. Acta Math. 99, 203–224 (1958) (in French)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beurling, A., Deny, J.: Dirichlet spaces. Proc. Natl. Acad. Sci. 45, 208–215 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, I: C∗- and W∗-algebras, algebras, symmetry groups, decomposition of states. In: Texts and Monographs in Physics. Springer, New York-Heidelberg (1979)

    Google Scholar 

  11. Bratteli, O., Robinson, D.W.: Operator algebras and quantum-statistical mechanics, II: Equilibrium states. In: Models in Quantum-Statistical Mechanics. Texts and Monographs in Physics. Springer, New York-Berlin (1981)

    Google Scholar 

  12. Caputo, P., Faggionato, A.: Diffusivity in one-dimensional generalized Mott variable-range hopping models. Ann. Appl. Probab. 19(4), 1459–1494 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cipriani, F.: Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras. J. Funct. Anal. 147, 259–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photon and Atoms: Introduction to Quantum Electrodynamics. Wiley, New York (2004)

    Google Scholar 

  15. Connes, A.: Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann. Ann. Inst. Fourier 24, 121–155 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Connes, A.: Sur la théorie non commutative de l’intégration. In: Algèbres d’opérateurs (Séminaire Les Plans-sur-Bex, 1978). Lecture Notes in Math., vol. 725, pp. 19–143. Springer, Berlin (1979) (in French)

    Chapter  Google Scholar 

  17. Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  18. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London-New York (1976)

    MATH  Google Scholar 

  19. Dixmier, J.: Les C∗-algèbres et leurs représentations, 2ième édn. Cahiers Scientifiques, Fasc. XXIX. Gauthier-Villars, Paris (1969) (in French)

    Google Scholar 

  20. Eggarter, T.P., Cohen, M.H.: Simple model for density of states and mobility of an electron in a gas of hard-core scatterers. Phys. Rev. Lett. 25, 807–810 (1971)

    Article  ADS  Google Scholar 

  21. Faggionato, A., Mathieu, P.: Mott law as upper bound for a random walk in a random environment. Commun. Math. Phys. 281, 263–286 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Faggionato, A., Schulz-Baldes, H., Spehner, D.: Mott law as lower bound for a random walk in a random environment. Commun. Math. Phys. 263, 21–64 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Fukushima, M.: Dirichlet Forms and Markov Processes. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  24. Haag, R., Hugenholtz, N.M., Winning, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215–236 (1967)

    Article  ADS  MATH  Google Scholar 

  25. Hastings, M.B.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  26. Hastings, M.B.: Locality in quantum and Markov dynamics on lattices and networks. Phys. Rev. Lett. 93, 140402 (2004)

    Article  ADS  Google Scholar 

  27. Hastings, M.B., Koma, T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781–804 (2006). arXiv:0507.4708 [math-ph]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Hill, R.M.: On the observation of variable range hopping. Phys. Status Solidi A 35, K29–K34 (1976)

    Article  ADS  Google Scholar 

  29. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. I. Elementary Theory. Pure and Applied Mathematics, vol. 100. Academic Press, New York (1983)

    Google Scholar 

  30. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition

    MATH  Google Scholar 

  31. Kirkpatrick, S.: Classical transport in disordered media: scaling and effective-medium theories. Phys. Rev. Lett. 27, 1722–1725 (1971)

    Article  ADS  Google Scholar 

  32. Kubo, R.: Statistical-mechanical theory of irreversible processes, I. J. Phys. Soc. Jpn. 12, 570–586 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  33. Last, B.J., Thouless, D.J.: Percolation theory and electrical conductivity. Phys. Rev. Lett. 27, 1719–1721 (1971)

    Article  ADS  Google Scholar 

  34. Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  35. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Mahan, G.: Many Particles Physics, 2nd printing. Plenum, New York (1990)

    Book  Google Scholar 

  37. Martin, P.C., Schwinger, J.: Theory of many-particle systems, I. Phys. Rev. 115, 1342–1373 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Miller, A., Abrahams, E.: Impurity conduction at low concentration. Phys. Rev. 120, 745–755 (1960)

    Article  ADS  MATH  Google Scholar 

  39. Mott, N.F.: J. Non-Cryst. Solids 1, 1 (1968)

    Article  ADS  Google Scholar 

  40. Mott, N.F.: Metal-Insulator Transitions. Taylor & Francis, London (1974)

    Google Scholar 

  41. Mott, N.F., Pepper, M., Pollitt, S., Wallis, R.H., Adkins, C.J.: The Anderson transition. Proc. R. Soc. Lond. A 345, 169–205 (1975)

    Article  ADS  Google Scholar 

  42. Nachtergaele, B., Vershynina, A., Zagrebnov, V.: Lieb-Robinson bounds and existence of the thermodynamic limit for a class of irreversible quantum dynamics. Preprint. arXiv:1103.1122v2 (2011)

  43. Prange, R., Girvin, S. (eds.): The Quantum Hall Effect. Springer, Berlin (1990)

    Google Scholar 

  44. Pollak, M.: A percolation treatment of dc-hopping conduction. J. Non-Cryst. Solids 11, 1–24 (1972)

    Article  ADS  Google Scholar 

  45. Polyakov, D.G., Shklovskii, B.I.: Variable range hopping as the mechanism of the conductivity peak broadening in the quantum Hall regime. Phys. Rev. Lett. 70, 3796–3799 (1993)

    Article  ADS  Google Scholar 

  46. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vols. I–IV. Academic Press, London (1975)

    Google Scholar 

  47. Renault, J.: A Groupoid Approach to C -Algebras. Lecture Notes in Math., vol. 793. Springer, Berlin (1980)

    Google Scholar 

  48. Shklovskii, B., Efros, A.: Electronic Properties of Doped Semiconductors. Springer, Berlin (1984)

    Google Scholar 

  49. Slater, J.C.: Electrons in perturbed periodic potentials. Phys. Rev. 76, 1592–1601 (1949)

    Article  ADS  MATH  Google Scholar 

  50. Spehner, D.: Contributions à la théorie du transport électronique dissipatif dans les solides apériodiques. Accessible at http://www-fourier.ujf-grenoble.fr/~spehner (in French)

  51. Spehner, D., Bellissard, J.: J. Stat. Phys. 104, 525–566 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. Spehner, D., Bellissard, J.: The quantum jumps approach for infinitely many states. In: Modern Challenges in Quantum Optics (Santiago, 2000). Lecture Notes in Phys., vol. 575, pp. 355–376. Springer, Berlin (2001)

    Chapter  Google Scholar 

  53. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53, 569–615 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  54. Stinespring, W.F.: Positive functions on C -algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)

    MathSciNet  MATH  Google Scholar 

  55. Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and Its Applications. Lecture Notes in Mathematics, vol. 128. Springer, Berlin-New York (1970)

    MATH  Google Scholar 

  56. Takesaki, M.: Theory of Operator Algebras. I. Springer, New York-Heidelberg (1979)

    Book  MATH  Google Scholar 

  57. Takesaki, M.: Theory of Operator Algebras. II. Operator Algebras and Non-commutative Geometry, vol. 6. Encyclopaedia of Mathematical Sciences, vol. 125. Springer, Berlin (2003)

    Google Scholar 

  58. Tomiyama, J.: On the projection of norm one in W∗-algebras. II. Tôhoku Math. J. 10, 204–209 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  59. Tomiyama, J.: Topological representation of C∗-algebras. Tôhoku Math. J. 14, 187–204 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  60. Tomiyama, J.: A characterization of C∗-algebras whose conjugate spaces are separable. Tôhoku Math. J. 15, 96–102 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  61. Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  62. Quotations by John von Neumann at: http://www-groups.dcs.st-and.ac.uk/~history

  63. Wannier, G.H.: The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937)

    Article  ADS  MATH  Google Scholar 

  64. Zabrodskii, A.G.: Hopping conduction and density of localized states near the Fermi level. Fiz. Tekh. Poluprov. 11, 595 (1977). English translation in Sov. Phys.-Semicond. 11, 345 (1977)

    Google Scholar 

  65. Ziman, J.M.: Hopping conductivity in disordered systems. J. Phys. C 1, 1532–1538 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work benefited from the NSF grants DMS-0600956 and DMS-0901514. Part of this work was done in Bielefeld with the support of the SFB 701 “Spectral Structures and Topological Methods in Mathematics” during the Summers 2009 and 2010. G.A. and C.S. thank the School of Mathematics at the Georgia Institute of Technology for support during the Spring 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Androulakis.

Additional information

J. Bellissard and C. Sadel were supported by NSF grants DMS-0600956 and DMS-0901514.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Androulakis, G., Bellissard, J. & Sadel, C. Dissipative Dynamics in Semiconductors at Low Temperature. J Stat Phys 147, 448–486 (2012). https://doi.org/10.1007/s10955-012-0454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0454-5

Keywords

Navigation