Abstract
We report on low-field Hall effect experiments in BiSr\(_{2}\)CaCu\(_{2}\)O\(_{8+x}\) single crystals with different carrier concentrations. The Hall coefficient is described as a sum of an ordinary term and an anomalous term. The temperature-dependent anomalous term has the form of a cutoff law where the relevant parameter is the doping-dependent pseudogap temperature, \(T^{*}(p)\), suggesting that the pseudogap boundary is a crossover phenomenon rather than a thermodynamic phase transition. Field-induced spin chiralities accompanied by loop orbital currents flowing in the Cu-O\(_{2}\) cell units are proposed as the microscopic origin of the anomalous term. We justify the cutoff law that effectively describes the temperature dependence of the anomalous term as resulting from a Griffiths-type cluster arrangement, where spins are antiferromagnetically coupled. The strong doping dependence of both the ordinary and anomalous terms suggests the occurrence of a Fermi surface reconstruction for carrier concentrations slightly below that of the optimum \(T_{c}\).
Similar content being viewed by others
Data Availability
No datasets were generated or analysed during the current study.
References
Timusk, T., Statt, B.: Rep. Prog. Phys. 62(1), 61 (1999). https://doi.org/10.1088/0034-4885/62/1/002
Norman, M.R., Pines, D., Kallin, C.: Adv. Phys. 54(8), 715 (2005). https://doi.org/10.1080/00018730500459906
Mott, N.F.: Rev. Mod. Phys. 40, 677 (1968). https://doi.org/10.1103/RevModPhys.40.677, www.link.aps.org/doi/10.1103/RevModPhys.40.677
Winograd, E.A., de’ Medici, L.: Phys. Rev. B 89, 085127 (2014). https://doi.org/10.1103/PhysRevB.89.085127, https://link.aps.org/doi/10.1103/PhysRevB.89.085127
Alloul, H., Ohno, T., Mendels, P.: Phys. Rev. Lett. 63, 1700 (1989). https://doi.org/10.1103/PhysRevLett.63.1700, www.link.aps.org/doi/10.1103/PhysRevLett.63.1700
Rossat-Mignod, J., Regnault, L., Vettier, C., Bourges, P., Burlet, P., Bossy, J., Henry, J., Lapertot, G.: Phys. C Supercond. 185–189, 86 (1991). https://doi.org/10.1016/0921-4534(91)91955-4, www.sciencedirect.com/science/article/pii/0921453491919554
Dai, P., Mook, H.A., Hayden, S.M., Aeppli, G., Perring, T.G., Hunt, R.D., Doǧan, F.: Science 284(5418), 1344 (1999). https://doi.org/10.1126/science.284.5418.1344, www.science.org/doi/abs/10.1126/science.284.5418.1344
Hinkov, V., Bourges, P., Pailhès, S.: Nature Phys. 3, 780–785 (2007). https://doi.org/10.1038/nphys720
Atkinson, W.A., Kampf, A.P., Bulut, S.: New J. Phys. 17(1), 013025 (2015). https://doi.org/10.1088/1367-2630/17/1/013025
Varma, C.M.: Phys. Rev. B 73, 155113 (2006). https://doi.org/10.1103/PhysRevB.73.155113, www.link.aps.org/doi/10.1103/PhysRevB.73.155113
Marino, E.C., Corrêa, R.O., Arouca, R., Nunes, L.H.C.M., Alves, V.S.: Supercond. Sci. Technol. 33(3), 035009 (2020). https://doi.org/10.1088/1361-6668/ab66e5
Du, Z., Li, H., Joo, S.H., Donoway, E.P., Lee, J., Davis, J.C.S., Gu, G., Johnson, P.D., Fujita, K.: Nature 580, 65 (2020). https://doi.org/10.1038/s41586-020-2143-x
de Mello, E.V.L.: J. Phys. Condens. Matter 32(40), 40LT02 (2020). https://doi.org/10.1088/1361-648X/ab9fd5
Tallon, J., Loram, J.: Physica C: Superconductivity 349(1), 53 (2001). https://doi.org/10.1016/S0921-4534(00)01524-0, www.sciencedirect.com/science/article/pii/S0921453400015240
Sadovskii, M.V.: Physics-Uspekhi 44(5), 515 (2001). https://doi.org/10.1070/PU2001v044n05ABEH000902
Gotlieb, K., Lin, C.Y., Serbyn, M., Zhang, W., Smallwood, C.L., Jozwiak, C., Eisaki, H., Hussain, Z., Vishwanath, A., Lanzara, A.: Science 362(6420), 1271 (2018). https://doi.org/10.1126/science.aao0980, www.science.org/doi/abs/10.1126/science.aao0980
Yang, H.B., Rameau, J.D., Pan, Z.H., Gu, G.D., Johnson, P.D., Claus, H., Hinks, D.G., Kidd, T.E.: Phys. Rev. Lett. 107, 047003 (2011). https://doi.org/10.1103/PhysRevLett.107.047003, www.link.aps.org/doi/10.1103/PhysRevLett.107.047003
Frachet, M., Vinograd, I., Zhou, R., Benhabib, S., Wu, S., Mayaffre, H., Krämer, S., Ramakrishna, S.K., Reyes, A.P., Debray, J., Kurosawa, T., Momono, N., Oda, M., Komiya, S., Masafumi Horio, S.O., Chang, J., Proust, C., LeBoeuf, D., Julien, M.H.: Nature Phys. 16, 1064 (2020). https://doi.org/10.1038/s41567-020-0950-5
Cyr-Choinière, O., Daou, R., Laliberté, F., Collignon, C., Badoux, S., LeBoeuf, D., Chang, J., Ramshaw, B.J., Bonn, D.A., Hardy, W.N., Liang, R., Yan, J.Q., Cheng, J.G., Zhou, J.S., Goodenough, J.B., Pyon, S., Takayama, T., Takagi, H., Doiron-Leyraud, N., Taillefer, L.: Phys. Rev. B 97, 064502 (2018). https://doi.org/10.1103/PhysRevB.97.064502, www.link.aps.org/doi/10.1103/PhysRevB.97.064502
Bounoua, D., Sidis, Y., Loew, T., Bourdarot, F., Boehm, M., Mangin-Thro, P.S.L., Balédent, V., Bourges, P.: Commun. Phys. 5 (2022). https://doi.org/10.1038/s42005-022-01048-1
Fischer, O., Kugler, M., Maggio-Aprile, I., Berthod, C., Renner, C.: Rev. Mod. Phys. 79, 353 (2007). https://doi.org/10.1103/RevModPhys.79.353, www.link.aps.org/doi/10.1103/RevModPhys.79.353
Deutscher, G.: Nature p 410–412 (1999). https://doi.org/10.1038/17075
Solovjov, A.L., Petrenko, E.V., Omelchenko, L.V., Vovk, R.V., Goulatis, I.L., Chroneos, A.: Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-45286-w
Konstantinovic, Z., Laborde, O., Monceau, P., Li, Z., Raffy, H.: Phys. B Condens. Matter 259–261, 569 (1999). https://doi.org/10.1016/S0921-4526(98)00764-9, www.sciencedirect.com/science/article/pii/S0921452698007649
Ong, N.P.: Physical Properties of High-Temperature Superconductors II. World Scientific, Singapore (1990)
Matthey, D., Gariglio, S., Giovannini, B., Triscone, J.M.: Phys. Rev. B 64, 024513 (2001). https://doi.org/10.1103/PhysRevB.64.024513, www.link.aps.org/doi/10.1103/PhysRevB.64.024513
Konstantinović, Z., Li, Z.Z., Raffy, H.: Phys. Rev. B 62, R11989 (2000). https://doi.org/10.1103/PhysRevB.62.R11989, www.link.aps.org/doi/10.1103/PhysRevB.62.R11989
LeBoeuf, D., Doiron-Leyraud, N., Vignolle, B., Sutherland, M., Ramshaw, B.J., Levallois, J., Daou, R., Laliberté, F., Cyr-Choinière, O., Chang, J., Jo, Y.J., Balicas, L., Liang, R., Bonn, D.A., Hardy, W.N., Proust, C., Taillefer, L.: Phys. Rev. B 83, 054506 (2011). https://doi.org/10.1103/PhysRevB.83.054506, www.link.aps.org/doi/10.1103/PhysRevB.83.054506
Griffiths, R.B.: Phys. Rev. Lett. 23, 17 (1969). https://doi.org/10.1103/PhysRevLett.23.17, www.link.aps.org/doi/10.1103/PhysRevLett.23.17
Bray, A.J.: Phys. Rev. Lett. 59, 586 (1987). https://doi.org/10.1103/PhysRevLett.59.586, www.link.aps.org/doi/10.1103/PhysRevLett.59.586
Lang, K.M., Madhavan, V., Hoffman, J.E., Hudson, E.W., Eisaki, H., Uchida, S., Davis, J.C.: Nature (2002). https://doi.org/10.1038/415412a
Lopes, L.F., Jaeckel, S.T., Vieira, V.N., Lopes, R.F., Turatti, A.M., Pimentel, J.L., Schaf, J., Pureur, P.: Materials Today: Proceedings 14, 26 (2019). https://doi.org/10.1016/j.matpr.2019.05.045, www.sciencedirect.com/science/article/pii/S2214785319308363. XXIII Latin American Symposium on Solid State Physics (SLAFES XXIII), San Carlos de Bariloche, Argentina, 10-13 April 2018
Lopes, L.F., Peña, J.P., Schaf, J., Tumelero, M.A., Vieira, V.N., Pureur, P.: Phys. B Condens. Matter 536, 855 (2018). https://doi.org/10.1016/j.physb.2017.09.002, www.sciencedirect.com/science/article/pii/S0921452617305835
Harris, J.M., Shen, Z.X., White, P.J., Marshall, D.S., Schabel, M.C., Eckstein, J.N., Bozovic, I.: Phys. Rev. B 54, R15665 (1996). https://doi.org/10.1103/PhysRevB.54.R15665, www.link.aps.org/doi/10.1103/PhysRevB.54.R15665
Jurelo, A.R., Kunzler, J.V., Schaf, J., Pureur, P., Rosenblatt, J.: Phys. Rev. B 56, 14815 (1997). https://doi.org/10.1103/PhysRevB.56.14815, www.link.aps.org/doi/10.1103/PhysRevB.56.14815
Jacobs, T., Simsek, Y., Koval, Y., Müller, P., Krasnov, V.M.: Phys. Rev. Lett. 116, 067001 (2016). https://doi.org/10.1103/PhysRevLett.116.067001, www.link.aps.org/doi/10.1103/PhysRevLett.116.067001
Neubauer, A., Pfleiderer, C., Binz, B., Rosch, A., Ritz, R., Niklowitz, P.G., Böni, P.: Phys. Rev. Lett. 102, 186602 (2009). https://doi.org/10.1103/PhysRevLett.102.186602, www.link.aps.org/doi/10.1103/PhysRevLett.102.186602
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Rev. Mod. Phys. 82, 1539 (2010). https://doi.org/10.1103/RevModPhys.82.1539, www.link.aps.org/doi/10.1103/RevModPhys.82.1539
Yi, S.D., Onoda, S., Nagaosa, N., Han, J.H.: Phys. Rev. B 80, 054416 (2009). https://doi.org/10.1103/PhysRevB.80.054416, www.link.aps.org/doi/10.1103/PhysRevB.80.054416
Balakirev, F.F., Betts, J.B., Migliori, A., Ono, S., Ando, Y., Boebinger, G.S.: Nature 424, 912 (2003). https://doi.org/10.1038/nature01890
Badoux, S., Tabis, W., Laliberté, F., Grissonnanche, G., Vignolle, B., Vignolles, D., Béard, J., Bonn, D.A., Hardy, W.N., Liang, R., Doiron-Leyraud, N., Taillefer, L., Proust, C.: Nature 531, 210 (2016). https://doi.org/10.1038/nature16983
Legros, A., Benhabib, S., Tabis, W., Laliberté, F., Dion, M., Lizaire, M., Vignolle, B., Vignolles, D., Raffy, H., Li, Z.Z., Auban-Senzier, P., Doiron-Leyraud, N., Fournier, P., Colson, D., Taillefer, L., Proust, C.: Nature Phys. 15, 142 (2019). https://doi.org/10.1038/s41567-018-0334-2
Fanfarillo, L., Cappelluti, E., Castellani, C., Benfatto, L.: Phys. Rev. Lett. 109, 096402 (2012). https://doi.org/10.1103/PhysRevLett.109.096402, www.link.aps.org/doi/10.1103/PhysRevLett.109.096402
He, C., Torija, M.A., Wu, J., Lynn, J.W., Zheng, H., Mitchell, J.F., Leighton, C.: Phys. Rev. B 76, 014401 (2007). https://doi.org/10.1103/PhysRevB.76.014401, www.link.aps.org/doi/10.1103/PhysRevB.76.01440’
Karmakar, A., Majumdar, S., Kundu, S., Nath, T.K., Giri, S.: Journal of Physics: Condensed Matter 25(6), 066006 (2013). https://doi.org/10.1088/0953-8984/25/6/066006
Ghosh, K., Mazumdar, C., Ranganathan, R., Mukherjee, S.: Scientific Reports 5, 1 (2015). https://doi.org/10.1038/srep15801
Dagotto, E.: Science 309(5732), 257 (2005). https://doi.org/10.1126/science.1107559, www.science.org/doi/abs/10.1126/science.1107559
Fradkin, E., Kivelson, S.A., Tranquada, J.M.: Rev. Mod. Phys. 87, 457 (2015). https://doi.org/10.1103/RevModPhys.87.457, www.link.aps.org/doi/10.1103/RevModPhys.87.457
Pan, S.H., O’Neal, J.P., Badzey, R.L., Chamon, C., Ding, H., Engelbrecht, J.R., Wang, Z., Eisaki, H., Uchida, S., Guptak, A.K., Ngk, K.W., Hudson, E.W., Lang, K.M., Davis, J.C.: Nature 413, 282 (2001). https://doi.org/10.1038/35095012
Boyer, M.C., Wise, W.D., Chatterjee, K., Yi, M., Kondo, T., Takeuchi, T., Ikuta, H., Hudson, E.W.: Nature Phys. 3, 802 (2007). https://doi.org/10.1038/nphys725
He, Y., Yin, Y., Zech, M., Soumyanarayanan, A., Yee, M.M., Williams, T., Boyer, M.C., Chatterjee, K., Wise, W.D., Zeljkovic, I., Kondo, T., Takeuchi, T., Ikuta, H., Mistark, P., Markiewicz, R.S., Bansil, A., Sachdev, S., Hudson, E.W., Hoffman, J.E.: Science 344(6184), 608 (2014). https://doi.org/10.1126/science.1248221, www.science.org/doi/abs/10.1126/science.1248221
Luo, H.G., Su, Y.H., Xiang, T.: Phys. Rev. B 77, 014529 (2008). https://doi.org/10.1103/PhysRevB.77.014529, www.link.aps.org/doi/10.1103/PhysRevB.77.014529
Ma, Q., Rule, K.C., Cronkwright, Z.W., Dragomir, M., Mitchell, G., Smith, E.M., Chi, S., Kolesnikov, A.I., Stone, M.B., Gaulin, B.D.: Phys. Rev. Res. 3, 023151 (2021). https://doi.org/10.1103/PhysRevResearch.3.023151, www.link.aps.org/doi/10.1103/PhysRevResearch.3.023151
Volger, J.: Phys. Rev. 79, 1023 (1950). https://doi.org/10.1103/PhysRev.79.1023, www.link.aps.org/doi/10.1103/PhysRev.79.1023
Richter, H., Lang, W., Peruzzi, M., Hattmansdorfer, H., Durrell, J.H., Pedarnig, J.D.: Supercond. Sci. Technol. 34(3), 035031 (2021). https://doi.org/10.1088/1361-6668/abdedf
Funding
This work received financial support from the Brazilian agencies Conselho Nacional de Ciencia e Tecnologia (CNPq) and Fundação de Amparo à Pequisa do Estado do Rio Grande do Sul (FAPERGS) under the grant PRONEX 16/0490-0.
Author information
Authors and Affiliations
Contributions
LFL prepared the single crystal samples, carried out the experiments and helped writte the manuscript MAT helps with experiments JS participated in the growth of the single crystal samples FM prepared the figures and manuscript in the LaTex format DS participated in the experiments CCPC participated experiments AAP participated in experiments VNV participated in sample preparation PP conceive the project and wrote the main text All authors reviewed the text.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lopes, L.F., Tumelero, M.A., Schaf, J. et al. Low-Field Hall effect, Pseudogap and Magnetic Textures in the Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O\(_{8+x}\) Superconductor. J Supercond Nov Magn 37, 701–710 (2024). https://doi.org/10.1007/s10948-024-06715-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10948-024-06715-8