Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Low-Field Hall effect, Pseudogap and Magnetic Textures in the Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O\(_{8+x}\) Superconductor

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We report on low-field Hall effect experiments in BiSr\(_{2}\)CaCu\(_{2}\)O\(_{8+x}\) single crystals with different carrier concentrations. The Hall coefficient is described as a sum of an ordinary term and an anomalous term. The temperature-dependent anomalous term has the form of a cutoff law where the relevant parameter is the doping-dependent pseudogap temperature, \(T^{*}(p)\), suggesting that the pseudogap boundary is a crossover phenomenon rather than a thermodynamic phase transition. Field-induced spin chiralities accompanied by loop orbital currents flowing in the Cu-O\(_{2}\) cell units are proposed as the microscopic origin of the anomalous term. We justify the cutoff law that effectively describes the temperature dependence of the anomalous term as resulting from a Griffiths-type cluster arrangement, where spins are antiferromagnetically coupled. The strong doping dependence of both the ordinary and anomalous terms suggests the occurrence of a Fermi surface reconstruction for carrier concentrations slightly below that of the optimum \(T_{c}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Timusk, T., Statt, B.: Rep. Prog. Phys. 62(1), 61 (1999). https://doi.org/10.1088/0034-4885/62/1/002

    Article  ADS  Google Scholar 

  2. Norman, M.R., Pines, D., Kallin, C.: Adv. Phys. 54(8), 715 (2005). https://doi.org/10.1080/00018730500459906

    Article  ADS  Google Scholar 

  3. Mott, N.F.: Rev. Mod. Phys. 40, 677 (1968). https://doi.org/10.1103/RevModPhys.40.677, www.link.aps.org/doi/10.1103/RevModPhys.40.677

  4. Winograd, E.A., de’ Medici, L.: Phys. Rev. B 89, 085127 (2014). https://doi.org/10.1103/PhysRevB.89.085127, https://link.aps.org/doi/10.1103/PhysRevB.89.085127

  5. Alloul, H., Ohno, T., Mendels, P.: Phys. Rev. Lett. 63, 1700 (1989). https://doi.org/10.1103/PhysRevLett.63.1700, www.link.aps.org/doi/10.1103/PhysRevLett.63.1700

  6. Rossat-Mignod, J., Regnault, L., Vettier, C., Bourges, P., Burlet, P., Bossy, J., Henry, J., Lapertot, G.: Phys. C Supercond. 185–189, 86 (1991). https://doi.org/10.1016/0921-4534(91)91955-4, www.sciencedirect.com/science/article/pii/0921453491919554

  7. Dai, P., Mook, H.A., Hayden, S.M., Aeppli, G., Perring, T.G., Hunt, R.D., Doǧan, F.: Science 284(5418), 1344 (1999). https://doi.org/10.1126/science.284.5418.1344, www.science.org/doi/abs/10.1126/science.284.5418.1344

  8. Hinkov, V., Bourges, P., Pailhès, S.: Nature Phys. 3, 780–785 (2007). https://doi.org/10.1038/nphys720

    Article  ADS  Google Scholar 

  9. Atkinson, W.A., Kampf, A.P., Bulut, S.: New J. Phys. 17(1), 013025 (2015). https://doi.org/10.1088/1367-2630/17/1/013025

  10. Varma, C.M.: Phys. Rev. B 73, 155113 (2006). https://doi.org/10.1103/PhysRevB.73.155113, www.link.aps.org/doi/10.1103/PhysRevB.73.155113

  11. Marino, E.C., Corrêa, R.O., Arouca, R., Nunes, L.H.C.M., Alves, V.S.: Supercond. Sci. Technol. 33(3), 035009 (2020). https://doi.org/10.1088/1361-6668/ab66e5

    Article  ADS  Google Scholar 

  12. Du, Z., Li, H., Joo, S.H., Donoway, E.P., Lee, J., Davis, J.C.S., Gu, G., Johnson, P.D., Fujita, K.: Nature 580, 65 (2020). https://doi.org/10.1038/s41586-020-2143-x

    Article  ADS  Google Scholar 

  13. de Mello, E.V.L.: J. Phys. Condens. Matter 32(40), 40LT02 (2020). https://doi.org/10.1088/1361-648X/ab9fd5

  14. Tallon, J., Loram, J.: Physica C: Superconductivity 349(1), 53 (2001). https://doi.org/10.1016/S0921-4534(00)01524-0, www.sciencedirect.com/science/article/pii/S0921453400015240

  15. Sadovskii, M.V.: Physics-Uspekhi 44(5), 515 (2001). https://doi.org/10.1070/PU2001v044n05ABEH000902

    Article  ADS  Google Scholar 

  16. Gotlieb, K., Lin, C.Y., Serbyn, M., Zhang, W., Smallwood, C.L., Jozwiak, C., Eisaki, H., Hussain, Z., Vishwanath, A., Lanzara, A.: Science 362(6420), 1271 (2018). https://doi.org/10.1126/science.aao0980, www.science.org/doi/abs/10.1126/science.aao0980

  17. Yang, H.B., Rameau, J.D., Pan, Z.H., Gu, G.D., Johnson, P.D., Claus, H., Hinks, D.G., Kidd, T.E.: Phys. Rev. Lett. 107, 047003 (2011). https://doi.org/10.1103/PhysRevLett.107.047003, www.link.aps.org/doi/10.1103/PhysRevLett.107.047003

  18. Frachet, M., Vinograd, I., Zhou, R., Benhabib, S., Wu, S., Mayaffre, H., Krämer, S., Ramakrishna, S.K., Reyes, A.P., Debray, J., Kurosawa, T., Momono, N., Oda, M., Komiya, S., Masafumi Horio, S.O., Chang, J., Proust, C., LeBoeuf, D., Julien, M.H.: Nature Phys. 16, 1064 (2020). https://doi.org/10.1038/s41567-020-0950-5

  19. Cyr-Choinière, O., Daou, R., Laliberté, F., Collignon, C., Badoux, S., LeBoeuf, D., Chang, J., Ramshaw, B.J., Bonn, D.A., Hardy, W.N., Liang, R., Yan, J.Q., Cheng, J.G., Zhou, J.S., Goodenough, J.B., Pyon, S., Takayama, T., Takagi, H., Doiron-Leyraud, N., Taillefer, L.: Phys. Rev. B 97, 064502 (2018). https://doi.org/10.1103/PhysRevB.97.064502, www.link.aps.org/doi/10.1103/PhysRevB.97.064502

  20. Bounoua, D., Sidis, Y., Loew, T., Bourdarot, F., Boehm, M., Mangin-Thro, P.S.L., Balédent, V., Bourges, P.: Commun. Phys. 5 (2022). https://doi.org/10.1038/s42005-022-01048-1

  21. Fischer, O., Kugler, M., Maggio-Aprile, I., Berthod, C., Renner, C.: Rev. Mod. Phys. 79, 353 (2007). https://doi.org/10.1103/RevModPhys.79.353, www.link.aps.org/doi/10.1103/RevModPhys.79.353

  22. Deutscher, G.: Nature p 410–412 (1999). https://doi.org/10.1038/17075

  23. Solovjov, A.L., Petrenko, E.V., Omelchenko, L.V., Vovk, R.V., Goulatis, I.L., Chroneos, A.: Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-45286-w

  24. Konstantinovic, Z., Laborde, O., Monceau, P., Li, Z., Raffy, H.: Phys. B Condens. Matter 259–261, 569 (1999). https://doi.org/10.1016/S0921-4526(98)00764-9, www.sciencedirect.com/science/article/pii/S0921452698007649

  25. Ong, N.P.: Physical Properties of High-Temperature Superconductors II. World Scientific, Singapore (1990)

    Google Scholar 

  26. Matthey, D., Gariglio, S., Giovannini, B., Triscone, J.M.: Phys. Rev. B 64, 024513 (2001). https://doi.org/10.1103/PhysRevB.64.024513, www.link.aps.org/doi/10.1103/PhysRevB.64.024513

  27. Konstantinović, Z., Li, Z.Z., Raffy, H.: Phys. Rev. B 62, R11989 (2000). https://doi.org/10.1103/PhysRevB.62.R11989, www.link.aps.org/doi/10.1103/PhysRevB.62.R11989

  28. LeBoeuf, D., Doiron-Leyraud, N., Vignolle, B., Sutherland, M., Ramshaw, B.J., Levallois, J., Daou, R., Laliberté, F., Cyr-Choinière, O., Chang, J., Jo, Y.J., Balicas, L., Liang, R., Bonn, D.A., Hardy, W.N., Proust, C., Taillefer, L.: Phys. Rev. B 83, 054506 (2011). https://doi.org/10.1103/PhysRevB.83.054506, www.link.aps.org/doi/10.1103/PhysRevB.83.054506

  29. Griffiths, R.B.: Phys. Rev. Lett. 23, 17 (1969). https://doi.org/10.1103/PhysRevLett.23.17, www.link.aps.org/doi/10.1103/PhysRevLett.23.17

  30. Bray, A.J.: Phys. Rev. Lett. 59, 586 (1987). https://doi.org/10.1103/PhysRevLett.59.586, www.link.aps.org/doi/10.1103/PhysRevLett.59.586

  31. Lang, K.M., Madhavan, V., Hoffman, J.E., Hudson, E.W., Eisaki, H., Uchida, S., Davis, J.C.: Nature (2002). https://doi.org/10.1038/415412a

    Article  Google Scholar 

  32. Lopes, L.F., Jaeckel, S.T., Vieira, V.N., Lopes, R.F., Turatti, A.M., Pimentel, J.L., Schaf, J., Pureur, P.: Materials Today: Proceedings 14, 26 (2019). https://doi.org/10.1016/j.matpr.2019.05.045, www.sciencedirect.com/science/article/pii/S2214785319308363. XXIII Latin American Symposium on Solid State Physics (SLAFES XXIII), San Carlos de Bariloche, Argentina, 10-13 April 2018

  33. Lopes, L.F., Peña, J.P., Schaf, J., Tumelero, M.A., Vieira, V.N., Pureur, P.: Phys. B Condens. Matter 536, 855 (2018). https://doi.org/10.1016/j.physb.2017.09.002, www.sciencedirect.com/science/article/pii/S0921452617305835

  34. Harris, J.M., Shen, Z.X., White, P.J., Marshall, D.S., Schabel, M.C., Eckstein, J.N., Bozovic, I.: Phys. Rev. B 54, R15665 (1996). https://doi.org/10.1103/PhysRevB.54.R15665, www.link.aps.org/doi/10.1103/PhysRevB.54.R15665

  35. Jurelo, A.R., Kunzler, J.V., Schaf, J., Pureur, P., Rosenblatt, J.: Phys. Rev. B 56, 14815 (1997). https://doi.org/10.1103/PhysRevB.56.14815, www.link.aps.org/doi/10.1103/PhysRevB.56.14815

  36. Jacobs, T., Simsek, Y., Koval, Y., Müller, P., Krasnov, V.M.: Phys. Rev. Lett. 116, 067001 (2016). https://doi.org/10.1103/PhysRevLett.116.067001, www.link.aps.org/doi/10.1103/PhysRevLett.116.067001

  37. Neubauer, A., Pfleiderer, C., Binz, B., Rosch, A., Ritz, R., Niklowitz, P.G., Böni, P.: Phys. Rev. Lett. 102, 186602 (2009). https://doi.org/10.1103/PhysRevLett.102.186602, www.link.aps.org/doi/10.1103/PhysRevLett.102.186602

  38. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Rev. Mod. Phys. 82, 1539 (2010). https://doi.org/10.1103/RevModPhys.82.1539, www.link.aps.org/doi/10.1103/RevModPhys.82.1539

  39. Yi, S.D., Onoda, S., Nagaosa, N., Han, J.H.: Phys. Rev. B 80, 054416 (2009). https://doi.org/10.1103/PhysRevB.80.054416, www.link.aps.org/doi/10.1103/PhysRevB.80.054416

  40. Balakirev, F.F., Betts, J.B., Migliori, A., Ono, S., Ando, Y., Boebinger, G.S.: Nature 424, 912 (2003). https://doi.org/10.1038/nature01890

  41. Badoux, S., Tabis, W., Laliberté, F., Grissonnanche, G., Vignolle, B., Vignolles, D., Béard, J., Bonn, D.A., Hardy, W.N., Liang, R., Doiron-Leyraud, N., Taillefer, L., Proust, C.: Nature 531, 210 (2016). https://doi.org/10.1038/nature16983

  42. Legros, A., Benhabib, S., Tabis, W., Laliberté, F., Dion, M., Lizaire, M., Vignolle, B., Vignolles, D., Raffy, H., Li, Z.Z., Auban-Senzier, P., Doiron-Leyraud, N., Fournier, P., Colson, D., Taillefer, L., Proust, C.: Nature Phys. 15, 142 (2019). https://doi.org/10.1038/s41567-018-0334-2

  43. Fanfarillo, L., Cappelluti, E., Castellani, C., Benfatto, L.: Phys. Rev. Lett. 109, 096402 (2012). https://doi.org/10.1103/PhysRevLett.109.096402, www.link.aps.org/doi/10.1103/PhysRevLett.109.096402

  44. He, C., Torija, M.A., Wu, J., Lynn, J.W., Zheng, H., Mitchell, J.F., Leighton, C.: Phys. Rev. B 76, 014401 (2007). https://doi.org/10.1103/PhysRevB.76.014401, www.link.aps.org/doi/10.1103/PhysRevB.76.01440’

  45. Karmakar, A., Majumdar, S., Kundu, S., Nath, T.K., Giri, S.: Journal of Physics: Condensed Matter 25(6), 066006 (2013). https://doi.org/10.1088/0953-8984/25/6/066006

    Article  ADS  Google Scholar 

  46. Ghosh, K., Mazumdar, C., Ranganathan, R., Mukherjee, S.: Scientific Reports 5, 1 (2015). https://doi.org/10.1038/srep15801

  47. Dagotto, E.: Science 309(5732), 257 (2005). https://doi.org/10.1126/science.1107559, www.science.org/doi/abs/10.1126/science.1107559

  48. Fradkin, E., Kivelson, S.A., Tranquada, J.M.: Rev. Mod. Phys. 87, 457 (2015). https://doi.org/10.1103/RevModPhys.87.457, www.link.aps.org/doi/10.1103/RevModPhys.87.457

  49. Pan, S.H., O’Neal, J.P., Badzey, R.L., Chamon, C., Ding, H., Engelbrecht, J.R., Wang, Z., Eisaki, H., Uchida, S., Guptak, A.K., Ngk, K.W., Hudson, E.W., Lang, K.M., Davis, J.C.: Nature 413, 282 (2001). https://doi.org/10.1038/35095012

    Article  ADS  Google Scholar 

  50. Boyer, M.C., Wise, W.D., Chatterjee, K., Yi, M., Kondo, T., Takeuchi, T., Ikuta, H., Hudson, E.W.: Nature Phys. 3, 802 (2007). https://doi.org/10.1038/nphys725

    Article  ADS  Google Scholar 

  51. He, Y., Yin, Y., Zech, M., Soumyanarayanan, A., Yee, M.M., Williams, T., Boyer, M.C., Chatterjee, K., Wise, W.D., Zeljkovic, I., Kondo, T., Takeuchi, T., Ikuta, H., Mistark, P., Markiewicz, R.S., Bansil, A., Sachdev, S., Hudson, E.W., Hoffman, J.E.: Science 344(6184), 608 (2014). https://doi.org/10.1126/science.1248221, www.science.org/doi/abs/10.1126/science.1248221

  52. Luo, H.G., Su, Y.H., Xiang, T.: Phys. Rev. B 77, 014529 (2008). https://doi.org/10.1103/PhysRevB.77.014529, www.link.aps.org/doi/10.1103/PhysRevB.77.014529

  53. Ma, Q., Rule, K.C., Cronkwright, Z.W., Dragomir, M., Mitchell, G., Smith, E.M., Chi, S., Kolesnikov, A.I., Stone, M.B., Gaulin, B.D.: Phys. Rev. Res. 3, 023151 (2021). https://doi.org/10.1103/PhysRevResearch.3.023151, www.link.aps.org/doi/10.1103/PhysRevResearch.3.023151

  54. Volger, J.: Phys. Rev. 79, 1023 (1950). https://doi.org/10.1103/PhysRev.79.1023, www.link.aps.org/doi/10.1103/PhysRev.79.1023

  55. Richter, H., Lang, W., Peruzzi, M., Hattmansdorfer, H., Durrell, J.H., Pedarnig, J.D.: Supercond. Sci. Technol. 34(3), 035031 (2021). https://doi.org/10.1088/1361-6668/abdedf

    Article  ADS  Google Scholar 

Download references

Funding

This work received financial support from the Brazilian agencies Conselho Nacional de Ciencia e Tecnologia (CNPq) and Fundação de Amparo à Pequisa do Estado do Rio Grande do Sul (FAPERGS) under the grant PRONEX 16/0490-0.

Author information

Authors and Affiliations

Authors

Contributions

LFL prepared the single crystal samples, carried out the experiments and helped writte the manuscript MAT helps with experiments JS participated in the growth of the single crystal samples FM prepared the figures and manuscript in the LaTex format DS participated in the experiments CCPC participated experiments AAP participated in experiments VNV participated in sample preparation PP conceive the project and wrote the main text All authors reviewed the text.

Corresponding author

Correspondence to P. Pureur.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, L.F., Tumelero, M.A., Schaf, J. et al. Low-Field Hall effect, Pseudogap and Magnetic Textures in the Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O\(_{8+x}\) Superconductor. J Supercond Nov Magn 37, 701–710 (2024). https://doi.org/10.1007/s10948-024-06715-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06715-8

Keywords

Mathematics Subject Classification (2020)

Navigation