Abstract
Hydrogels are cross-linked polymeric networks that absorb or release water in response to some stimuli and are susceptible to cellular attachment and can be remodeled into complex structures. The properties of hydrogels can be tuned by gentle use of copolymers and cross-linkers. These hydrogels are designed in such a way that they are degraded and subsequently removed from the work area. The hydrogels have ability to carry small amounts of drugs, proteins and other desirable components for medical and other purposes. Poly(lactic acid) (PLA) and its stereoisomers are nonfunctional-hydrophobic polymers that are applicable in biomedical sector. Nevertheless, a high glass transition temperature of PLA limits its application in biomedical field. They, therefore are conjugated or copolymerized with hydrophilic polymers like polyethylene glycol (PEG) and chitosan to form composite hydrogels. The PEG is used to polymerize PLA to form thermo-sensitive hydrogels. Similarly, polyurethanes, polysaccharides, oligomers and peptides are employed for hydrogels formation through physical and chemical routes. The existence of functional moieties in polysaccharides like carboxyl, amine and hydroxyl offers easy cross-linking and conjugation. In addition to this, the use of polysaccharides as hydrophilic part of hydrogels engages the aqueous media which exhibits high swelling capacity of polysaccharides. The PLA based thermo-responsive hydrogels have effectively been used for wound healing, tissue engineering as well as drug control and release. This review gives a thorough focus on recent developments in PLA based hydrogels formation, their properties and possible biomedical applications.
Similar content being viewed by others
References
A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012)
J. Cabral, S.C. Moratti, Hydrogels for biomedical applications. Future Med. Chem. 3, 1877–1888 (2011)
N. Bhattarai, J. Gunn, M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62, 83–99 (2010)
F. Ganji, M.J. Abdekhodaie, Chitosan–g-PLGA copolymer as a thermosensitive membrane. Carbohyd. Polym. 80, 740–746 (2010)
D. Garlotta, A literature review of poly(lacticctic acid). J. Polym. Environ. 9, 63–84 (2001)
E.-R. Kenawy, G.L. Bowlin, K. Mansfield, J. Layman, D.G. Simpson, E.H. Sanders et al., Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly(lacticctic acid), and a blend. J. Controlled Release 81, 57–64 (2002)
R. Datta, S.-P. Tsai, P. Bonsignore, S.-H. Moon, J.R. Frank, Technological and economic potential of poly(lacticctic acid) and lactic acid derivatives. FEMS Microbiol. Rev. 16, 221–231 (1995)
K.A. Athanasiou, G.G. Niederauer, C.M. Agrawal, Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17, 93–102 (1996)
N. Graupner, A.S. Herrmann, J. Müssig, Natural and man-made cellulose fibre-reinforced poly(lacticctic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos. Part A: Appl. Sci. Manuf. 40, 810–821 (2009)
Y.L. Wu, X. Chen, W. Wang, X.J. Loh, Engineering bioresponsive hydrogels toward healthcare applications. Macromol. Chem. Phys. 217, 175–188 (2016)
M. Hamidi, A. Azadi, P. Rafiei, Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 60, 1638–1649 (2008)
M. Murariu, P. Dubois, PLA composites: from production to properties. Adv. Drug Deliv. Rev. 107, 17–46 (2016)
Y. Zhan, C.-C. Chu, Biodegradation of hydrophilic–hydrophobic hydrogels and its effect on albumin release. J. Mater. Sci: Mater. Med. 13, 667–676 (2002)
M. Rinaudo, Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57, 397–430 (2008)
J. Sun, H. Tan, Alginate-based biomaterials for regenerative medicine applications. Materials 6, 1285–1309 (2013)
A. Sannino, C. Demitri, M. Madaghiele, Biodegradable cellulose-based hydrogels: design and applications. Materials 2, 353–373 (2009)
R. Jin, L.M. Teixeira, P.J. Dijkstra, M. Karperien, C. Van Blitterswijk, Z. Zhong et al., Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30, 2544–2551 (2009)
V.B. Bueno, R. Bentini, L.H. Catalani, D.F.S. Petri, Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr. Polym. 92, 1091–1099 (2013)
R. Mishra, M. Datt, K. Pal, A. Banthia, Preparation and characterization of amidated pectin based hydrogels for drug delivery system. J. Mater. Sci.: Mater. Med. 19, 2275–2280 (2008)
H. Tan, C.R. Chu, K.A. Payne, K.G. Marra, Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30, 2499–2506 (2009)
W. van Dijk-Wolthuis, J. Hoogeboom, M. Van Steenbergen, S. Tsang, W. Hennink, Degradation and release behavior of dextran-based hydrogels. Macromolecules 30, 4639–4645 (1997)
A.L. Rutz, R.N. Shah, in Polymeric Hydrogels as Smart Biomaterials, ed. by S. Kaila. Protein-based hydrogels, (Springer, New York, 2016) pp. 73–104
A.M. Jonker, D.W. Löwik, J.C. van Hest, Peptide-and protein-based hydrogels. Chem. Mater. 24, 759–773 (2012)
Y. Tabata, Biomaterial technology for tissue engineering applications, J. R. Soc. Interface. 6, S311–S324 (2009)
W. Hennink, C.F. Van Nostrum, Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 64, 223–236 (2012)
S.K. Gulrez, S. Al-Assaf, G.O. Phillips, in Progress in Molecular and Environmental Bioengineering-from Analysis and Modeling to Technology Applications, ed. by A. Carpi. Hydrogels: methods of preparation, characterisation and applications (InTech, London, 2011)
E.M. Ahmed, Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105–121 (2015)
G. Grassi, R. Farra, P. Caliceti, G. Guarnieri, S. Salmaso, M. Carenza et al., Temperature-sensitive hydrogels. Am. J. Drug Deliv. 3, 239–251 (2005)
Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53, 321–339 (2001)
L. Dong, A.S. Hoffman, A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. J. Controlled Release 15, 141–152 (1991)
M. Torres-Lugo, N.A. Peppas, Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules 32, 6646–6651, (1999)
F. Ahmadi, Z. Oveisi, S.M. Samani, Z. Amoozgar, Chitosan based hydrogels: characteristics and pharmaceutical applications. Res. Pharm. Sci. 10, 1–16 (2014)
M. McKenzie, D. Betts, A. Suh, K. Bui, L.D. Kim, H. Cho, Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 20, 20397–20408 (2015)
J. Li, L. Peng, J. Sun, H. Guo, K. Guo, Z. Li et al., Slow-release drug deliver system with polylactic acid hydrogels in prevention of tracheal wall fibroplasia. Arch. Clin. Exp. Surg. 1, 1–7 (2012)
Z. Farooqi, S. Khan, R. Begum, Temperature-responsive hybrid microgels for catalytic applications: a review. Mater. Sci. Technol. 33, 129–137 (2017)
F. Naseer, M. Ajmal, F. Bibi, Z.H. Farooqi, M. Siddiq, Copper and cobalt nanoparticles containing poly (acrylic acid-co-acrylamide) hydrogel composites for rapid reduction of 4-nitrophenol and fast removal of malachite green from aqueous medium, Polym. Compos. (2017). https://doi.org/10.1002/pc.24329
Z.H. Farooqi, S.R. Khan, R. Begum, A. Ijaz, Review on synthesis, properties, characterization, and applications of responsive microgels fabricated with gold nanostructures. Rev. Chem. Eng. 32, 49–69 (2016)
D. Go, D. Rommel, L. Chen, F. Shi, J. Sprakel, A.J. Kuehne, Programmable phase transitions in a photonic microgel system: linking soft interactions to a temporal pH gradient, Langmuir 33, 2011–2016, (2017)
Q. Wu, X. Du, A. Chang, X. Jiang, X. Yan, X. Cao et al., Bioinspired synthesis of poly (phenylboronic acid) microgels with high glucose selectivity at physiological pH. Polym. Chem. 7, 6500–6512 (2016)
Y. Kaneko, S. Nakamura, K. Sakai, T. Aoyagi, A. Kikuchi, Y. Sakurai et al., Rapid deswelling response of poly (N-isopropylacrylamide) hydrogels by the formation of water release channels using poly (ethylene oxide) graft chains. Macromolecules 31, 6099–6105 (1998)
J. Berger, M. Reist, J.M. Mayer, O. Felt, R. Gurny, Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 57, 35–52 (2004)
K. Matyjaszewski, K.L. Beers, A. Kern, S.G. Gaynor, Hydrogels by atom transfer radical polymerization. I. Poly (N-vinylpyrrolidinone-g-styrene) via the macromonomer method. J. Polym. Sci., Part A: Polym. Chem. 36, 823–830 (1998)
K.T. Nguyen, J.L. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307–4314 (2002)
M. Ehrbar, S.C. Rizzi, R.G. Schoenmakers, B. San Miguel, J.A. Hubbell, F.E. Weber et al., Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromol 8, 3000–3007 (2007)
A. Altunbas, D.J. Pochan, in Peptide-Based Materials, ed. by T. Deming. Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. (Springer, Berlin, 2011), pp. 135–167
C.Yan and D.J. Pochan, Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem. Soc. Rev. 39, 3528–3540 (2010)
J.R. Tse, A.J. Engler, Preparation of hydrogel substrates with tunable mechanical properties, Curr. Protoc. Cell Biol. 47(1), 10–16, (2010). https://doi.org/10.1002/0471143030.cb1016s47
N. Sood, A. Bhardwaj, S. Mehta, A. Mehta, Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv. 23, 748–770, (2016)
M.S. Holm, S. Saravanamurugan, E. Taarning, Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328, 602–605 (2010)
D.D. Mladenović, A.P. Djukić-Vuković, S.D. Kocić-Tanackov, J.D. Pejin, L.V. Mojović, Lactic acid production on a combined distillery stillage and sugar beet molasses substrate, J. Chem. Technol. Biotechnol. 91(9), 2474–2479 (2015)
N. Narayanan, P.K. Roychoudhury, A. Srivastava, L (+) lactic acid fermentation and its product polymerization. Electron. J. Biotechnol. 7, 167–178 (2004)
Y. Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tang et al., Chemical synthesis of lactic acid from cellulose catalysed by lead (II) ions in water. Nat. Commun. 4, 2141 (2013)
M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 9, 552–571 (2010)
G. Kale, R. Auras, S.P. Singh, R. Narayan, Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Testing 26, 1049–1061 (2007)
T. Ohkita, S.H. Lee, Thermal degradation and biodegradability of poly(lacticctic acid)/corn starch biocomposites. J. Appl. Polym. Sci. 100, 3009–3017 (2006)
A.V. Janorkar, A.T. Metters, D.E. Hirt, Modification of poly(lacticctic acid) films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules 37, 9151–9159 (2004)
A. Basu, K.R. Kunduru, S. Doppalapudi, A.J. Domb, W. Khan, Poly(lacticctic acid) based hydrogels. Adv. Drug Deliv. Rev. 107, 192–205 (2016)
R. Al-Itry, K. Lamnawar, A. Maazouz, Biopolymer blends based on poly(lacticctic acid): shear and elongation rheology/structure/blowing process relationships, Polymers 7, 939–962 (2015)
H. Li, Y. Li, W. Yang, L. Cheng, J. Tan, Needleless melt-electrospinning of biodegradable poly(lacticctic acid) ultrafine fibers for the removal of oil from water, Polymers 9, 3, (2017)
J. Zeng, H. Haoqing, A. Schaper, J.H. Wendorff, A. Greiner, Poly-l-lactide nanofibers by electrospinning–influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 3, 102–110, (2003)
Y. Cheng, S. Deng, P. Chen, R. Ruan, Polylactic acid (PLA) synthesis and modifications: a review. Front. Chem. China 4, 259–264 (2009)
A.J. Lasprilla, G.A. Martinez, B.H. Lunelli, A.L. Jardini, R.M. Filho, Poly-lactic acid synthesis for application in biomedical devices—a review, Biotechnol. Adv. 30, 321–328, (2012)
R. Mehta, V. Kumar, H. Bhunia, S. Upadhyay, Synthesis of poly(lacticctic acid): a review. J. Macromol. Sci. Part C: Polym. Rev. 45, 325–349 (2005)
L. Xiao, B. Wang, G. Yang, M. Gauthier, in Biomedical Science, Engineering and Technology, ed. by D.N. Ghista. Poly(lacticctic acid)-based biomaterials: synthesis, modification and applications. (InTech, London, 2012), pp. 247–282
A. Södergård, M. Stolt, Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27, 1123–1163 (2002)
M.S. Lopes, A. Jardini, R. Maciel, Filho, Poly(lacticctic acid) production for tissue engineering applications. Proc. Eng. 42, 1402–1413 (2012)
J.K. Oh, Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter 7, 5096–5108 (2011)
R.M. Rasal, A.V. Janorkar, D.E. Hirt, Poly(lacticctic acid) modifications. Prog. Polym. Sci. 35, 338–356 (2010)
I.M. El-Sherbiny, M.H. Yacoub, Hydrogel scaffolds for tissue engineering: progress and challenges, Glob. Cardiol. Sci. Pract. (2013). https://doi.org/10.5339/gcsp.2013.38
D. Das, R. Das, J. Mandal, A. Ghosh, S. Pal, Dextrin crosslinked with poly(lacticctic acid): a novel hydrogel for controlled drug release application, J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40039
A. Metters, K. Anseth, C. Bowman, Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer 41, 3993–4004 (2000)
I.A. Nam, Y.J. Oh, A. Abdullah-Al-Nahain, E. Yoo, S.Y. Park, Preparation of cross-linked biodegradable copolymers based polycarbanion of 3-arm PL (D) LA with brominated pluronic and stereocomplex mediated gelation behavior, in Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS International Conference on, 2012, pp. 620–623
A. Harrane, A. Leroy, H. Nouailhas, X. Garric, J. Coudane, B. Nottelet, PLA-based biodegradable and tunable soft elastomers for biomedical applications. Biomed. Mater. 6, 065006 (2011)
E.M. Saffer, G.N. Tew, S.R. Bhatia, Poly(lacticctic acid)-poly (ethylene oxide) block copolymers: new directions in self-assembly and biomedical applications, Curr. Med. Chem. 18, 5676–5686, (2011)
T. Maharana, S. Pattanaik, A. Routaray, N. Nath, A.K. Sutar, Synthesis and characterization of poly(lacticctic acid) based graft copolymers. React. Funct. Polym. 93, 47–67 (2015)
Y. Hu, Y. Liu, X. Qi, P. Liu, Z. Fan, S. Li, Novel bioresorbable hydrogels prepared from chitosan-graft-polylactide copolymers. Polym. Int. 61, 74–81 (2012)
H.A. El-Mohdy, E. Hegazy, E. El-Nesr, M. El-Wahab, Synthesis, characterization and properties of radiation-induced Starch/(EG-co-MAA) hydrogels. Arab. J. Chem. 9, S1627–S1635, (2016)
T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenges. Polymer 49, 1993–2007 (2008)
I. Chen, T. Ci, L. Yu, J. Ding, Effects of molecular weight and its distribution of PEG block on micellization and thermogellability of PLGA–PEG–PLGA copolymer aqueous solutions. Macromolecules 48, 3662–3671 (2015)
I.M. El-Sherbiny, M. Abdel-Mogib, A.-A.M. Dawidar, A. Elsayed, H.D. Smyth, Biodegradable pH-responsive alginate-poly(lacticctic-co-glycolic acid) nano/micro hydrogel matrices for oral delivery of silymarin. Carbohydr. Polym. 83, 1345–1354 (2011)
I.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012)
Y. Li, L. Zhu, Y. Fan, Y. Li, L. Cheng, W. Liu et al., Formation and controlled drug release using a three-component supramolecular hydrogel for anti-Schistosoma japonicum cercariae, Nanomaterials, 6, 46, 2016
S. Zhou, X. Zheng, X. Yu, J. Wang, J. Weng, X. Li et al., Hydrogen bonding interaction of poly (d, l-lactide)/hydroxyapatite nanocomposites. Chem. Mater. 19, 247–253 (2007)
I. Slager, A.J. Domb, Biopolymer stereocomplexes. Adv. Drug Deliv. Rev. 55, 549–583 (2003)
J. Geschwind, S. Rathi, C. Tonhauser, M. Schömer, S.L. Hsu, E.B. Coughlin et al., Stereocomplex formation in polylactide multiarm stars and comb copolymers with linear and hyperbranched multifunctional PEG. Macromol. Chem. Phys. 214, 1434–1444 (2013)
H. Tsuji, Poly(lacticctide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 5, 569–597, (2005)
H. Mao, P. Pan, G. Shan, Y. Bao, In situ formation and gelation mechanism of thermoresponsive stereocomplexed hydrogels upon mixing diblock and triblock poly(lacticctic acid)/poly (ethylene glycol) copolymers. J. Phys. Chem. B 119, 6471–6480 (2015)
E. Larrañeta, S. Stewart, M. Ervine, R. Al-Kasasbeh, R.F. Donnelly, Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. J. Funct. Biomater. 9, 13 (2018)
A.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine. (Academic Press, Cambridge, 2004)
G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30, 38–70 (2005)
T. Coviello, P. Matricardi, C. Marianecci, F. Alhaique, Polysaccharide hydrogels for modified release formulations. J. Controlled Release 119, 5–24 (2007)
Y. Hu, X. Wu, X. JinRui, Self-assembled supramolecular hydrogels formed by biodegradable PLA/CS diblock copolymers and β-cyclodextrin for controlled dual drug delivery. Int. J. Biol. Macromol. 108, 18–23 (2018)
S. De Jong, B. Van Eerdenbrugh, C.v. van Nostrum, J. Kettenes-Van Den, Bosch, W. Hennink, Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. J. Controlled Release 71, 261–275 (2001)
I. Szekalska, A. Puciłowska, E. Szymańska, P. Ciosek, K. Winnicka, Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int. J. Polym. Sci. (2016). https://doi.org/10.1155/2016/7697031
A. Martino, T.Y. Lee, S.-H. Kim, A.J. deMello, Microfluidic generation of PEG-b-PLA polymersomes containing alginate-based core hydrogel. Biomicrofluidics 9, 024101, (2015)
S. Sood, V.K. Gupta, S. Agarwal, K. Dev, D. Pathania, Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly(lacticctic acid-co-itaconic acid) hydrogel. Int. J. Biol. Macromol. 101, 612–620 (2017)
A. Khan, M. Sajjad, E. Khan, H.M. Akil, L.A. Shah, Z.H. Farooqi, Synthesis, characterization and physiochemical investigation of chitosan-based multi-responsive Copolymeric hydrogels. J. Polym. Res. 24, 170 (2017)
W. Hennink, H. Talsma, J. Borchert, S. De Smedt, J. Demeester, Controlled release of proteins from dextran hydrogels. J. Controlled Release 39, 47–55 (1996)
I. Naessens, A. Cerdobbel, W. Soetaert, E.J. Vandamme, Leuconostoc dextransucrase and dextran: production, properties and applications. J. Chem. Technol. Biotechnol. 80, 845–860 (2005)
A.M. Bachelder, T.T. Beaudette, K.E. Broaders, J. Dashe, J.M. Fréchet, Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J. Am. Chem. Soc. 130, 10494–10495 (2008)
S. De Jong, S. De Smedt, J. Demeester, C. Van Nostrum, J. Kettenes-Van Den, Bosch, W. Hennink, Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J. Controlled Release 72, 47–56 (2001)
I. Ma, L. Deng, J. Chen, Applications of poly (ethylene oxide) in controlled release tablet systems: a review. Drug Dev. Ind. Pharm. 40, 845–851 (2014)
S. Dhawan, K. Dhawan, M. Varma, V. Sinha, Applications of poly (ethylene oxide) in drug delivery systems. Pharm. Technol. 29, 82–96 (2005)
T. Yamamoto, K. Inoue, Y. Tezuka, Hydrogel formation by the ‘topological conversion’of cyclic PLA–PEO block copolymers. Polym. J. 48, 391 (2016)
S.H. Emami, R. Salovey, Crosslinked poly (ethylene oxide) hydrogels. J. Appl. Polym. Sci. 88, 1451–1455 (2003)
S.R. Bhatia, G.N. Tew, in Degradable Polymers and Materials: Principles and Practice, 2nd edn, ed. by. C. Scholz, K.C. Khemani. PLA-PEO-PLA hydrogels chemical structure, self-assembly and mechanical properties (ACS Publications, Washington DC, 2012) pp. 313–324
I. Sanabria-DeLong, A.J. Crosby, G.N. Tew, Photo-cross-linked PLA-PEO-PLA hydrogels from self-assembled physical networks: mechanical properties and influence of assumed constitutive relationships. Biomacromol 9, 2784–2791 (2008)
I. Molina, S. Li, M.B. Martinez, M. Vert, Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials 22, 363–369 (2001)
S.H. Chen, C.T. Tsao, H.C. Chou, C.H. Chang, C.T. Hsu, C.N. Chuang et al., Synthesis of poly(lacticctic acid)-based polyurethanes. Polym. Int. 62, 1159–1168 (2013)
I.H. Pereira, E. Ayres, P.S. Patrício, A.M. Góes, V.S. Gomide, E.P. Junior et al., Photopolymerizable and injectable polyurethanes for biomedical applications: synthesis and biocompatibility. Acta Biomater. 6, 3056–3066 (2010)
S. Corneillie, P.N. Lan, E. Schacht, M. Davies, A. Shard, R. Green et al., Polyethylene glycol-containing polyurethanes for biomedical applications. Polym. Int. 46, 251–259 (1998)
A. Burke, N. Hasirci, in Biomaterials: From Molecules to Engineered Tissues, vol 553, ed. by N. Hasirci, V. Hasirci. Polyurethanes in biomedical applications (Springer, New York, 2004), pp. 83–101
J.-B. Zeng, Y.-D. Li, W.-D. Li, K.-K. Yang, X.-L. Wang, Y.-Z. Wang, Synthesis and properties of poly (ester urethane) s consisting of poly (l-lactic acid) and poly (ethylene succinate) segments. Ind. Eng. Chem. Res. 48, 1706–1711 (2009)
L.M. Gradinaru, C. Ciobanu, S. Vlad, M. Bercea, M. Popa, Thermoreversible poly (isopropyl lactate diol)-based polyurethane hydrogels: effect of isocyanate on some physical properties. Ind. Eng. Chem. Res. 51, 12344–12354 (2012)
X.J. Loh, Y.X. Tan, Z. Li, L.S. Teo, S.H. Goh, J. Li, Biodegradable thermogelling poly (ester urethane) s consisting of poly(lacticctic acid)–Thermodynamics of micellization and hydrolytic degradation. Biomaterials 29, 2164–2172 (2008)
S. Hsu, C.-W. Chen, K.-C. Hung, Y.-C. Tsai, S. Li, Thermo-responsive polyurethane hydrogels based on poly (ε-caprolactone) diol and amphiphilic polylactide-poly (ethylene glycol) block copolymers. Polymers 8, 252, 2016
A. Alexander, J. Khan, S. Saraf, S. Saraf, Poly (ethylene glycol)–poly(lacticctic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J. Controlled Release 172, 715–729 (2013)
I.N. Mason, A.T. Metters, C.N. Bowman, K.S. Anseth, Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels. Macromolecules 34, 4630–4635 (2001)
I. Lee, Y.H. Bae, Y.S. Sohn, B. Jeong, Thermogelling aqueous solutions of alternating multiblock copolymers of poly (l-lactic acid) and poly (ethylene glycol). Biomacromolecules 7, 1729–1734 (2006)
A. Hiemstra, Z. Zhong, L. Li, P.J. Dijkstra, J. Feijen, In-situ formation of biodegradable hydrogels by stereocomplexation of PEG–(PLLA) 8 and PEG–(PDLA) 8 star block copolymers. Biomacromol 7, 2790–2795 (2006)
A. Hiemstra, Z. Zhong, S.R. Van Tomme, M.J. van Steenbergen, J.J. Jacobs, W. Den Otter et al., In vitro and in vivo protein delivery from in situ forming poly (ethylene glycol)–poly(lacticctide) hydrogels. J. Controlled release 119, 320–327 (2007)
A. Hiemstra, Z. Zhong, P.J. Dijkstra, J. Feijen, in Hydrogels, ed. by R. Barbucci. PEG-PLA stereocomplexed hydrogels (Springer, Milan, 2009), pp. 53–65
Y. Zhang, X. Wu, Y. Han, F. Mo, Y. Duan, S. Li, Novel thymopentin release systems prepared from bioresorbable PLA–PEG–PLA hydrogels. Int. J. Pharm. 386, 15–22 (2010)
I. Chen, T. Ci, T. Li, L. Yu, J. Ding, Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature-induced sol–gel transition in water. Macromolecules 47, 5895–5903 (2014)
Y.I. Hsu, K. Masutani, T. Yamaoka, Y. Kimura, Tuning of sol–gel transition in the mixed polymer micelle solutions of copolymer mixtures consisting of enantiomeric diblock and triblock copolymers of polylactide and poly (ethylene glycol). Macromol. Chem. Phys. 216, 837–846 (2015)
Y.-I. Hsu, K. Masutani, T. Yamaoka, Y. Kimura, Strengthening of hydrogels made from enantiomeric block copolymers of polylactide (PLA) and poly(ethylene glycol) (PEG) by the chain extending Diels–Alder rPolymer 67, 157–166 (2015)
H. Mao, G. Shan, Y. Bao, Z.L. Wu, P. Pan, Thermoresponsive physical hydrogels of poly(lacticctic acid)/poly (ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence. Soft Matter 12, 4628–4637, (2016)
H. Cho, J. Gao, G.S. Kwon, PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol–gels for drug delivery. J. Controlled Release 240, 191–201 (2016)
S.J. Buwalda, P.J. Dijkstra, J. Feijen, In situ forming stereocomplexed and post-photocrosslinked acrylated star poly(ethylene glycol)-poly(lactide) hydrogels. Eur. Polymer J. 94, 152–161 (2017)
I. Saini, M. Arora, M.R. Kumar, Poly(lacticctic acid) blends in biomedical applications. Adv. Drug Deliv. Rev. 107, 47–59 (2016)
R. Song, F. Liu, J. Yang, L. Yao, L. He, B. Qin, Novel pH-sensitive lactic acid oligomer grafted chitosan hydrogel for controlled drug release. J. Macromol. Sci. Part B 50, 1260–1269 (2011)
A. Behnoodfar, S. Dadbin, M. Frounchi, PLA microspheres-embedded PVA hydrogels prepared by gamma-irradiation and freeze-thaw methods as drug release carriers. Int. J. Polym. Mater. 62, 28–33 (2013)
I. Prabhakar, P. Sudhakara, M. Subha, K.C. Rao, J.I. Song, Novel thermoresponsive biodegradable nanocomposite hydrogels for dual function in biomedical applications. Polym.-Plast. Technol. Eng. 54, 1704–1714 (2015)
J. Su, S. Wang, S. Zhu, X. Liu, Yu, S. Li, Synthesis and characterization of novel carboxymethyl chitosan grafted polylactide hydrogels for controlled drug delivery. Polym. Adv. Technol. 26, 924–931 (2015)
J. Zhao, Y. Mi, Y. Liu, S.-S. Feng, Quantitative control of targeting effect of anticancer drugs formulated by ligand-conjugated nanoparticles of biodegradable copolymer blend. Biomaterials 33, 1948–1958 (2012)
J. Pan, S.-S. Feng, Targeted delivery of paclitaxel using folate-decorated poly(lacticctide)–vitamin E TPGS nanoparticles. Biomaterials 29, 2663–2672 (2008)
A. Jeong, Y.H. Bae, S.W. Kim, Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. Journal of Controlled Release 63, 155–163 (2000)
H. Cho, G.S. Kwon, Thermosensitive poly-(d, l-lactide-co-glycolide)-block-poly (ethylene glycol)-block-poly-(d, l-lactide-co-glycolide) hydrogels for multi-drug delivery. J. Drug Target. 22, 669–677 (2014)
Y. Zhang, C.C. Chu, Biodegradable dextran–polylactide hydrogel networks: their swelling, morphology and the controlled release of indomethacin. J. Biomed. Mater. Res. 59, 318–328 (2002)
Z. Zhang, Q. Lv, X. Gao, L. Chen, Y. Cao, S. Yu et al., pH-responsive poly (ethylene glycol)/poly (l-lactide) supramolecular micelles based on host–guest interaction. ACS Appl. Mater. Interfaces 7, 8404–8411, (2015)
Q. He, J. Yang, J. Li, J. Xin, J. Li, Cyclodextrin-conjugated poly(lacticctic acid)-b–poly (ethylene glycol) micelles as a potential controlled drug release system, J. Controlled Release 172, e60–e61, (2013)
Q. He, W. Wu, K. Xiu, Q. Zhang, F. Xu, J. Li, Controlled drug release system based on cyclodextrin-conjugated poly(lacticctic acid)-b-poly (ethylene glycol) micelles. Int. J. Pharm. 443, 110–119 (2013)
Y.J. Kim, S. Choi, J.J. Koh, M. Lee, K.S. Ko, S.W. Kim, Controlled release of insulin from injectable biodegradable triblock copolymer. Pharm. Res. 18, 548–550 (2001)
S. Chen, J. Singh, Controlled delivery of testosterone from smart polymer solution based systems: in vitro evaluation. Int. J. Pharm. 295, 183–190 (2005)
S. Chen, J. Singh, In vitro release of levonorgestrel from phase sensitive and thermosensitive smart polymer delivery systems. Pharm. Dev. Technol. 10, 319–325 (2005)
S. Duvvuri, K.G. Janoria, A.K. Mitra, Development of a novel formulation containing poly (d, l-lactide-co-glycolide) microspheres dispersed in PLGA–PEG–PLGA gel for sustained delivery of ganciclovir. J. Controlled release 108, 282–293 (2005)
N.K. Singh, Q.V. Nguyen, B.S. Kim, D.S. Lee, Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel. Nanoscale 7, 3043–3054 (2015)
E. Khodaverdi, F. Hadizadeh, F.S.M. Tekie, A. Jalali, S.A. Mohajeri, F. Ganji, Preparation and analysis of a sustained drug delivery system by PLGA–PEG–PLGA triblock copolymers. Polym. Bull. 69, 429–438 (2012)
J.S. Boateng, K.H. Matthews, H.N. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97, 2892–2923 (2008)
E. Caló, V.V. Khutoryanskiy, Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polymer J. 65, 252–267 (2015)
J. Koehler, F.P. Brandl, A.M. Goepferich, Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 100, 1–11 (2018)
Z. Li, W. Ning, J. Wang, A. Choi, P.-Y. Lee, P. Tyagi et al., Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm. Res. 20, 884–888 (2003)
P.-Y. Lee, Z. Li, L. Huang, Thermosensitive hydrogel as a Tgf-β1 gene delivery vehicle enhances diabetic wound healing. Pharm. Res. 20, 1995–2000, (2003)
X. Xu, G. Zhou, X. Li, X. Zhuang, W. Wang, Z. Cai et al., Solution blowing of chitosan/PLA/PEG hydrogel nanofibers for wound dressing. Fibers Polym. 17, 205–211 (2016)
S. Perumal, D. Pappuru, A. Chakraborty, D.K. Maya Nandkumar, Chand, M. Doble, Synthesis and characterization of curcumin loaded PLA—hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater. Sci. Eng.: C 76, 1196–1204 (2017)
R.A.A. Alsaheb, A. Aladdin, N.Z. Othman, R.A. Malek, O.M. Leng, R. Aziz et al., Recent applications of polylactic acid in pharmaceutical and medical industries. J Chem Pharm Res 7, 51–63 (2015)
A. Burdick, M.N. Mason, A.D. Hinman, K. Thorne, K.S. Anseth, Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J. Controlled Release 83, 53–63 (2002)
M. Santoro, S.R. Shah, J.L. Walker, A.G. Mikos, Poly(lacticctic acid) nanofibrous scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 107, 206–212 (2016)
G. Lin, L. Cosimbescu, N.J. Karin, B.J. Tarasevich, Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. Biomed. Mater. 7, 024107 (2012)
A. Dhillon, P. Schneider, G. Kuhn, Y. Reinwald, L.J. White, A. Levchuk et al., Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing. J. Mater. Sci.: Mater. Med. 22, 2599–2605 (2011)
E. Vidović, D. Klee, H. Höcker, Evaluation of water uptake and mechanical properties of biomedical polymers. J. Appl. Polym. Sci. 130, 3682–3688 (2013)
D.S. Puperi, A. Kishan, Z.E. Punske, Y. Wu, E. Cosgriff-Hernandez, J.L. West et al., Electrospun polyurethane and hydrogel composite scaffolds as biomechanical mimics for aortic valve tissue engineering. ACS Biomater. Sci. Eng. 2, 1546–1558 (2016)
Acknowledgements
The authors acknowledge the financial support of Higher Education Commission of Pakistan for this study. Data availability. This is a review article so no raw data involved in it.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Munim, S.A., Raza, Z.A. Poly(lactic acid) based hydrogels: formation, characteristics and biomedical applications. J Porous Mater 26, 881–901 (2019). https://doi.org/10.1007/s10934-018-0687-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10934-018-0687-z