Abstract
Contact tracing (CT) is an indispensable tool in controlling infectious disease outbreaks, which is regarded as the most effective weapon for curbing the spread of viruses. Due to the emergence of infectious diseases, many countries have implemented CT systems to mitigate the spread of the virus. Nevertheless, existing systems are either insufficiently secure or have high computational requirements for resource-constrained client devices. Thus, in this paper, we propose PPCT, an efficient and privacy-preserving CT system that prevents all significant attacks present in most CT systems. Our system ensures that the personal information of diagnosed users remains private from both the server and other users. Specifically, by employing our new and concise private set intersection cardinality (CPSI-CA) protocol, PPCT can efficiently answer user queries while preserving the privacy of personal information and query results. Furthermore, we conducted extensive experiments, and the results show that PPCT outperforms most existing systems in terms of computational cost and communication overhead, which demonstrates the feasibility of PPCT. More specifically, our scheme has improved a hundred times on client runtime.
Similar content being viewed by others
Data Availability
No datasets were generated or analysed during the current study.
References
Ahmed, N., Michelin, R.A., Xue, W., Putra, G.D., Ruj, S., Kanhere, S.S., Jha, S.: DIMY: enabling privacy-preserving contact tracing. J. Netw. Comput. Appl. 202, 103356 (2022). https://doi.org/10.1016/j.jnca.2022.103356
Bautista, O.G., Manshaei, M.H., Hernandez, R., Akkaya, K., Homsi, S., Uluagac, S.: MPC-ABC: blockchain-based network communication for efficiently secure multiparty computation. J. Netw. Syst. Manage. 31(4), 68 (2023)
Brack, S., Reichert, L., Scheuermann, B.: Caudht: decentralized contact tracing using a DHT and blind signatures. In: 2020 IEEE 45th Conference on Local Computer Networks (LCN), pp. 337–340. IEEE (2020)
Canetti, R., Kalai, Y.T., Lysyanskaya, A., Rivest, R.L., Shamir, A., Shen, E., Trachtenberg, A., Varia, M., Weitzner, D.J.: Privacy-preserving automated exposure notification. Cryptology ePrint Archive (2020). https://eprint.iacr.org/2020/863
Chan, J., Foster, D., Gollakota, S., Horvitz, E., Jaeger, J., Kakade, S., Kohno, T., Langford, J., Larson, J., Sharma, P., et al.: Pact: Privacy sensitive protocols and mechanisms for mobile contact tracing. arXiv preprint (2020). arXiv:2004.03544
Chen, H., Yang, Y., Wu, Y.: Invalid message risks and analysis of laws to restrict cyber crime in social applications. In: Proceedings of the 2022 11th International Conference on Networks, Communication and Computing, pp. 341–347 (2022)
Chen, X., Xu, S., Cao, Y., He, Y., Xiao, K.: AQRS: anti-quantum ring signature scheme for secure epidemic control with blockchain. Comput. Netw. 224, 109595 (2023)
Chen, X., Xu, S., He, Y., Cui, Y., He, J., Gao, S.: LFS-AS: lightweight forward secure aggregate signature for e-health scenarios. In: ICC 2022-IEEE International Conference on Communications, pp. 1239–1244. IEEE (2022)
Chen, X., Xu, S., Qin, T., Cui, Y., Gao, S., Kong, W.: AQ-ABS: anti-quantum attribute-based signature for EMRS sharing with blockchain. In: 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1176–1181. IEEE (2022)
Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality using bloom filter. In: Proceedings of the 18th International Conference on Information Security, ISC 2015, vol. 9290, pp. 209–226. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-23318-5_12
Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R., Elsabagh, M., Kiourtis, N., Schulte, B., Stavrou, A.: Function secret sharing for PSI-CA: with applications to private contact tracing. arXiv preprint (2020). arXiv:2012.13053
Duong, T., Phan, D.H., Trieu, N.: Catalic: delegated psi cardinality with applications to contact tracing. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 870–899. Springer (2020)
Feng, R., Chen, S., Xie, X., Ma, L., Meng, G., Liu, Y., Lin, S.W.: MobiDroid: a performance-sensitive malware detection system on mobile platform. In: 2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS), pp. 61–70. IEEE (2019)
Feng, R., Chen, S., Xie, X., Meng, G., Lin, S.W., Liu, Y.: A performance-sensitive malware detection system using deep learning on mobile devices. IEEE Trans. Inf. Forensics Secur. 16, 1563–1578 (2020)
Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler-Dörner, L., Parker, M., Bonsall, D., Fraser, C.: Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368(6491), eabb6936 (2020)
Gao, J., Surana, C., Trieu, N.: Secure contact tracing platform from simplest private set intersection cardinality. IET Inf. Secur. 16(5), 346–361 (2022)
Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value stores and amplification for private set intersection. In: Annual International Cryptology Conference, pp. 395–425. Springer (2021)
Jhanwar, M.P., Sarkar, S.: PHYCT: Privacy preserving hybrid contact tracing. Cryptology ePrint Archive (2020)
Jia, Y., Sun, S.F., Zhou, H.S., Du, J., Gu, D.: Shuffle-based private set union: faster and more secure. In: 31st USENIX Security Symposium (USENIX Security 22), pp. 2947–2964 (2022)
Klinkenberg, D., Fraser, C., Heesterbeek, H.: The effectiveness of contact tracing in emerging epidemics. PLoS ONE 1(1), e12 (2006)
Liu, J.K., Au, M.H., Yuen, T.H., Zuo, C., Wang, J., Sakzad, A., Luo, X., Li, L., Choo, K.K.R.: Privacy-preserving covid-19 contact tracing app: a zero-knowledge proof approach. Cryptology ePrint Archive (2020)
Madhusudan, P., Ren, L., Venkatakrishnan, V.: Privacy-preserving secure contact tracing (2020). https://github.com/ConTraILProtocols/documents/blob/master/ContrailWhitePaper.pdf
Michael, K., Abbas, R.: Behind covid-19 contact trace apps: the Google–Apple partnership. IEEE Consum. Electron. Mag. 9(5), 71–76 (2020)
Mueller, U.E., Omosehin, O., Akinkunmi, A.E., Ayanbadejo, J.O., Somefun, E.O., Momah-Haruna, A.P.: Contact tracing in an African megacity during covid 19: lessons learned. Afr. J. Reprod. Health 24(2), 27–31 (2020)
Pagh, R., Rodler, F.F.: Cuckoo hashing. In: auf der Heide, F.M. (ed.) Algorithms—ESA 2001, pp. 121–133. Springer, Berlin (2001)
Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Spot-light: lightweight private set intersection from sparse OT extension. In: Annual International Cryptology Conference, pp. 401–431. Springer (2019)
Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PAXOS: fast, malicious private set intersection. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 739–767. Springer (2020)
Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on OT extension. ACM Trans. Privacy Secur. (TOPS) 21(2), 1–35 (2018)
Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology ePrint Archive (2005)
Raskar, R., Pahwa, D., Beaudry, R.: Contact tracing: Holistic solution beyond Bluetooth. IEEE Data Eng. Bull. 43(2), 67–70 (2020)
Reichert, L., Brack, S., Scheuermann, B.: Privacy-preserving contact tracing of covid-19 patients. Cryptology ePrint Archive (2020)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://doi.org/10.1145/359168.359176
Tang, Q.: Privacy-preserving contact tracing: current solutions and open questions. arXiv preprint (2020). arXiv:2004.06818
Tracetogether: (2021). https://www.tracetogether.gov.sg/. Accessed 2 Feb 2021
Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione: lightweight contact tracing with strong privacy. arXiv preprint (2020). arXiv:2004.13293
Troncoso, C., Payer, M., Hubaux, J.P., Salathé, M., Larus, J., Bugnion, E., Lueks, W., Stadler, T., Pyrgelis, A., Antonioli, D., et al.: Decentralized privacy-preserving proximity tracing. arXiv preprint (2020). arXiv:2005.12273
Von Arx, S., Becker-Mayer, I., Blank, D., Colligan, J., Fenwick, R., Hittle, M., Ingle, M., Nash, O., Nguyen, V., Petrie, J., et al.: Slowing the spread of infectious diseases using crowdsourced data. IEEE Data Eng. Bull. 43(2), 71–82 (2020)
Wan, Z., Liu, X.: ContactChaser: a simple yet effective contact tracing scheme with strong privacy. Cryptology ePrint Archive (2020)
Wang, X., Lin, Y., Yang, Y., Xu, H., Luo, Z.: A secure physical health test data sharing scheme based on token distribution and programmable blockchains. Comput. Commun. 209, 444–454 (2023)
Xia, Z., Gu, Q., Xiong, L., Zhou, W., Weng, J.: Privacy-preserving image retrieval based on additive secret sharing. arXiv Preprint (2020). arXiv:2009.06893
Yang, Y., Lin, Y., Li, Z., Zhao, L., Yao, M., Lai, Y., Li, P.: GOOSEBT: a programmable malware detection framework based on process, file, registry, and com monitoring. Comput. Commun. 204, 24–32 (2023)
Acknowledgements
We extend our deepest gratitude to everyone who has been and continues to be involved in CT research. The research is supported by the National Natural Science Foundation of China (Grant Nos. 62272199).
Author information
Authors and Affiliations
Contributions
Q. Y., Y. Y., and S. X. wrote the main manuscript. R. G., H. X., Y. L., and X. C. prepared figures and tables. Q. Y. and Y. Y. conducted the experiments. Q. Y., Y. Y., and Y.L. revised the manuscript in the first revision round. W. T. and S.M. Y. supervised the whole team. All authors reviewed the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yang, Q., Yang, Y., Xu, S. et al. PPCT: Privacy-Preserving Contact Tracing Using Concise Private Set Intersection Cardinality. J Netw Syst Manage 32, 97 (2024). https://doi.org/10.1007/s10922-024-09865-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10922-024-09865-1