Abstract
Microservice architecture offers a decentralized structure using componentization of large applications. This approach can be coupled with Edge computing principles: applications with stringent response time can benefit from different deployment options. However, it is crucial to gain profound insights into correlations between the deployment of distributed application components and the response time, especially from an application perspective. For correct placement decisions, it is important to evaluate the impact of small functions’ placement and their interactions across the Edge–Cloud Continuum. This paper investigates the response time from an application perspective, considering the componentization using microservice architecture. Unlike the existing application placement approaches, we present extensive simulation results, illustrating the impact of service chains and marginally considered Application Programming Interface Gateways placement. Numerical evidence depicts that the design and placement of microservice-based applications could counter the common perception that Edge resources are always suitable for user-perceived response time. Further, we also present an experiment involving a componentized application and its optimized deployment in an actual testbed. Our findings and design guidelines inform effective component placement decisions while considering infrastructure constraints as well.
Similar content being viewed by others
References
Balouek-Thomert, D., Renart, E.G., Zamani, A.R., Simonet, A., Parashar, M.: Towards a computing continuum: enabling edge-to-cloud integration for data-driven workflows. Int. J. High Perform. Comput. Appl. 33(6), 1159–1174 (2019)
Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16 ( 2012)
Netaji, V.K., Bhole, G.P.: A comprehensive survey on container resource allocation approaches in cloud computing: state-of-the-art and research challenges. In: Web Intelligence, vol. 19, pp. 295–316 ( 2021). IOS Press
Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice architectures: an industrial survey. In: 2018 IEEE International Conference on Software Architecture (ICSA), pp. 29–2909 ( 2018). IEEE
Kaur, K., Guillemin, F., Rodriguez, V.Q., Sailhan, F.: Latency and network aware placement for cloud-native 5G/6G services. In: 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), pp. 114–119 ( 2022). IEEE
Aksakalli, I.K., Çelik, T., Can, A.B., Tekinerdoğan, B.: Deployment and communication patterns in microservice architectures: a systematic literature review. J. Syst. Softw. 180, 111014 (2021)
Fu, Y., Shan, Y., Zhu, Q., Hung, K., Wu, Y., Quek, T.Q.: A distributed microservice-aware paradigm for 6G: challenges, principles, and research opportunities. IEEE Netw. (2023). https://doi.org/10.1109/MNET.2023.3321528
Bulej, L., Bureš, T., Filandr, A., Hnětynka, P., Hnětynková, I., Pacovskỳ, J., Sandor, G., Gerostathopoulos, I.: Managing latency in edge-cloud environment. J. Syst. Softw. 172, 110872 (2021)
Alvarado-Valiente, J., Romero-Álvarez, J., Moguel, E., García-Alonso, J., Murillo, J.M.: Technological diversity of quantum computing providers: a comparative study and a proposal for API gateway integration. Softw. Qual. J. 32, 1–21 (2023)
Pallewatta, S., Kostakos, V., Buyya, R.: Microfog: a framework for scalable placement of microservices-based IoT applications in federated fog environments. J. Syst. Softw. 209, 111910 (2024)
Laso, S., Flores, D., Garcia-Alonso, J., Murillo, J.M., Berrocal, J.: Deploying APIs: edge vs cloud environments. MMTC Commun. Front. 19 (2019)
Cheng, K., Zhang, S., Liu, M., Gu, Y., Wei, L., Cheng, H., Liu, K., Song, Y., Shi, X., Zhu, A., et al.: Geoscale: microservice autoscaling with cost budget in geo-distributed edge clouds. IEEE Trans. Parallel Distrib. Syst. 35(4), 646–662 (2024)
Peng, K., Wang, L., He, J., Cai, C., Hu, M.: Joint optimization of service deployment and request routing for microservices in mobile edge computing. IEEE Trans. Serv. Comput. (2024). https://doi.org/10.1109/TSC.2024.3349408
Wang, Y., Shu, Z., Chen, S., Lin, J., Zhang, Z.: A cost and demand sensitive adjustment algorithm for service function chain in data center network. Comput. Netw. 242, 110254 (2024)
Brogi, A., Forti, S., Ibrahim, A.: Optimising QoS-assurance, resource usage and cost of fog application deployments. In: Cloud Computing and Services Science: 8th International Conference, CLOSER 2018, Funchal, Madeira, Portugal, March 19-21, 2018, Revised Selected Papers 8, pp. 168–189 ( 2019). Springer, Berlin
Brondolin, R., Santambrogio, M.D.: Presto: a latency-aware power-capping orchestrator for cloud-native microservices. In: 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), pp. 11–20 ( 2020). IEEE
Nassereldine, A., Diab, S., Baydoun, M., Leach, K., Alt, M., Milojicic, D., El Hajj, I.: Predicting the performance-cost trade-off of applications across multiple systems. In: 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 216–228 ( 2023). IEEE
Gong, Y., Bian, K., Hao, F., Sun, Y., Wu, Y.: Dependent tasks offloading in mobile edge computing: a multi-objective evolutionary optimization strategy. Futur. Gener. Comput. Syst. 148, 314–325 (2023)
Souza, P.S., Ferreto, T., Calheiros, R.N.: Edgesimpy: Python-based modeling and simulation of edge computing resource management policies. Future Gener. Comput. Syst. 148, 446–459 (2023)
Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., Pallickara, S.: Serverless computing: an investigation of factors influencing microservice performance. In: 2018 IEEE International Conference on Cloud Engineering (IC2E), pp. 159–169 (2018). IEEE
Roman, D., Song, H., Loupos, K., Krousarlis, T., Soylu, A., Skarmeta, A.F.: The computing fleet: managing microservices-based applications on the computing continuum. In: 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C), pp. 40–44 ( 2022). IEEE
Nath, S.B., Chattopadhyay, S., Karmakar, R., Addya, S.K., Chakraborty, S., Ghosh, S.K.: PTC: pick-test-choose to place containerized micro-services in IoT. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 ( 2019). IEEE
Pallewatta, S., Kostakos, V., Buyya, R.: Qos-aware placement of microservices-based iot applications in fog computing environments. Futur. Gener. Comput. Syst. 131, 121–136 (2022)
Canali, C., Di Modica, G., Lancellotti, R., Rossi, S., Scotece, D.: A validated performance model for micro-services placement in fog systems. SN Comput. Sci. 4(4), 417 (2023)
Salaht, F.A., Desprez, F., Lebre, A.: An overview of service placement problem in fog and edge computing. ACM Comput. Surv. 53(3), 1–35 (2020)
Niu, Y., Liu, F., Li, Z.: Load balancing across microservices. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 198–206 (2018). IEEE
Islam, M.M., Ramezani, F., Lu, H.Y., Naderpour, M.: Optimal placement of applications in the fog environment: a systematic literature review. J. Parallel Distrib. Comput. 174, 46–69 (2023)
Villari, M., Celesti, A., Tricomi, G., Galletta, A., Fazio, M.: Deployment orchestration of microservices with geographical constraints for edge computing. In: 2017 IEEE Symposium on Computers and Communications (ISCC), pp. 633–638 (2017). IEEE
Khan, M.G., Taheri, J., Al-Dulaimy, A., Kassler, A.: Perfsim: a performance simulator for cloud native microservice chains. IEEE Trans. Cloud Comput. 11(2), 1395–1413 (2021)
Sampaio, A.R., Rubin, J., Beschastnikh, I., Rosa, N.S.: Improving microservice-based applications with runtime placement adaptation. J. Internet Serv. Appl. 10(1), 1–30 (2019)
Marchese, A., Tomarchio, O.: Network-aware container placement in cloud-edge Kubernetes clusters. In: 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 859–865 ( 2022). IEEE
Marchese, A., Tomarchio, O.: Application and infrastructure-aware orchestration in the cloud-to-edge continuum. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 262–271 ( 2023). IEEE
Ding, Z., Wang, S., Jiang, C.: Kubernetes-oriented microservice placement with dynamic resource allocation. IEEE Trans. Cloud Comput. 11(2), 1777–1793 (2022)
Bufalino, J., Di Francesco, M., Aura, T.: Analyzing microservice connectivity with kubesonde. In: Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 2038–2043 ( 2023)
Rossi, F., Cardellini, V., Presti, F.L., Nardelli, M.: Geo-distributed efficient deployment of containers with Kubernetes. Comput. Commun. 159, 161–174 (2020)
Chowdhury, S.R., Salahuddin, M.A., Limam, N., Boutaba, R.: Re-architecting NFV ecosystem with microservices: state of the art and research challenges. IEEE Network 33(3), 168–176 (2019)
Sheoran, A., Sharma, P., Fahmy, S., Saxena, V.: Contain-ED: an NFV micro-service system for containing E2E latency. ACM SIGCOMM Computer Communication Review 47(5), 54–60 (2017)
Kaur, K., Guillemin, F., Sailhan, F.: Dynamic migration of microservices for end-to-end latency control in 5G/6G networks. J. Netw. Syst. Manag. 31(4), 84 (2023)
Bhamare, D., Samaka, M., Erbad, A., Jain, R., Gupta, L., Chan, H.A.: Optimal virtual network function placement in multi-cloud service function chaining architecture. Comput. Commun. 102, 1–16 (2017)
Zuo, X., Su, Y., Wang, Q., Xie, Y.: An API gateway design strategy optimized for persistence and coupling. Adv. Eng. Softw. 148, 102878 (2020)
Tomić, M., Dimitrieski, V., Vještica, M., Župunski, R., Jeremić, A., Kaufmann, H.: Towards applying API gateway to support microservice architectures for embedded systems. ICIST (2022)
Xu, R., Jin, W., Kim, D.: Microservice security agent based on API gateway in edge computing. Sensors 19(22), 4905 (2019)
Zhao, J., Jing, S., Jiang, L.: Management of API gateway based on micro-service architecture. J. Phys. 1087, 032032 (2018)
Moreira, P., Ribeiro, A., Silva, J.M.: Age: automatic performance evaluation of API gateways. In: 2023 IEEE Symposium on Computers and Communications (ISCC), pp. 405–410 (2023). IEEE
Pallewatta, S., Kostakos, V., Buyya, R.: Placement of microservices-based IoT applications in fog computing: a taxonomy and future directions. ACM Comput. Surv. 55(14s), 1–43 (2023)
Doan, T.V., Bajpai, V., Crawford, S.: A longitudinal view of Netflix: content delivery over IPV6 and content cache deployments. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 1073–1082 ( 2020). IEEE
(ISG), N.F.V.N.E.I.S.G.: Management and orchestration; architectural framework specification @online. https://www.etsi.org/deliver/etsi_gs/NFV/001_099/006/03.06.01_60/gs_nfv006v030601p.pdf
Paganelli, F., Ulema, M., Martini, B.: Context-aware service composition and delivery in NGSONs over SDN. IEEE Commun. Mag. 52(8), 97–105 (2014)
Surti, H., Janes, P., Craft, T., Widawsky, T.: Types and Locations of Edge Data Centers. Technical Report, Telecommunications Industry Association, TIA (October (2019)
Santoyo-González, A., Cervelló-Pastor, C.: Edge nodes infrastructure placement parameters for 5G networks. In: 2018 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 1–6 ( 2018). IEEE
Isazadeh, A., Ziviani, D., Claridge, D.E.: Global trends, performance metrics, and energy reduction measures in datacom facilities. Renew. Sustain. Energy Rev. 174, 113149 (2023)
Gharbaoui, M., Martini, B., Cecchetti, G., Castoldi, P.: Resource orchestration strategies with retrials for latency-sensitive network slicing over distributed telco clouds. IEEE Access 9, 132801–132817 (2021)
Bilal, K., Khalid, O., Erbad, A., Khan, S.U.: Potentials, trends, and prospects in edge technologies: fog, cloudlet, mobile edge, and micro data centers. Comput. Netw. 130, 94–120 (2018)
Plauth, M., Feinbube, L., Polze, A.: A performance survey of lightweight virtualization techniques. In: European Conference on Service-Oriented and Cloud Computing, pp. 34–48 (2017). Springer, Berlin
Arora, S., Ksentini, A., Bonnet, C.: Cloud native lightweight slice orchestration (CLISO) framework. Comput. Commun. 213, 1–12 (2023)
Shadija, D., Rezai, M., Hill, R.: Microservices: granularity vs. performance. In: Companion Proceedings of The10th International Conference on Utility and Cloud Computing, pp. 215–220 (2017)
López, P.G., Sánchez-Artigas, M., París, G., Pons, D.B., Ollobarren, Á.R., Pinto, D.A.: Comparison of FAAS orchestration systems. In: 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), pp. 148–153 (2018). IEEE
Liu, D.H., Levy, A., Noghabi, S., Burckhardt, S.: Doing more with less: Orchestrating serverless applications without an orchestrator. In: 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), pp. 1505–1519 (2023)
Giamattei, L., Guerriero, A., Pietrantuono, R., Russo, S.: Automated functional and robustness testing of microservice architectures. J. Syst. Softw. 207, 111857 (2024)
Luo, S., Xu, H., Lu, C., Ye, K., Xu, G., Zhang, L., He, J., Xu, C.: An in-depth study of microservice call graph and runtime performance. IEEE Trans. Parallel Distrib. Syst. 33(12), 3901–3914 (2022)
Colarusso, C., De Caro, A., Falco, I., Goglia, L., Zimeo, E.: A distributed tracing pipeline for improving locality awareness of microservices applications. Software 54(6), 1118–1140 (2024)
Montesi, F., Weber, J.: Circuit breakers, discovery, and API gateways in microservices (2016). arXiv:1609.05830
Adib, D.: How does edge computing architecture impact latency. https://stlpartners.com/articles/edge-computing/how-does-edge-computing-architecture-impact-latency/
Sanchez-Gomez, J., Marin-Perez, R., Sanchez-Iborra, R., Zamora, M.A.: MEC-based architecture for interoperable and trustworthy internet of moving things. Digit. Commun. Netw. 9(1), 270–279 (2023)
Gan, Y., Delimitrou, C.: The architectural implications of cloud microservices. IEEE Comput. Archit. Lett. 17(2), 155–158 (2018)
Varga, A.: A practical introduction to the OMNeT++ simulation framework. In: Recent Advances in Network Simulation, pp. 3–51. Springer, Berlin (2019)
Aderaldo, C.M., Mendonça, N.C., Pahl, C., Jamshidi, P.: Benchmark requirements for microservices architecture research. In: 2017 IEEE/ACM 1st International Workshop on Establishing the Community-Wide Infrastructure for Architecture-Based Software Engineering (ECASE), pp. 8– 13 (2017). IEEE
Merino, X., Otero, C., Nieves-Acaron, D., Luchterhand, B.: Towards orchestration in the cloud-fog continuum. In: SoutheastCon 2021, pp. 1–8 (2021). IEEE
Acknowledgements
This research work is supported by Project CLOUD CONTINUUM SOUVERAIN ET JUMEAUX NUMÉRIQUES under Grant AMI CLOUD-1 C2JN (DOS0179613/00,DOS0179612/00), and the DOCTE6G. We are thankful to the C2JN project partners for consolidating the computing continuum to deploy and validate the yield of this research work.
Author information
Authors and Affiliations
Contributions
Syed Mohsan Raza: Conceptualization, Methodology, Visualization, Writing-original draft. Roberto Minerva: Conceptualization, Writing-original draft, Validation, Visualization. Barbara Martini: Conceptualization, Editing, Writing-original draft, Investigation, Validation. Noel Crespi: Methodology, Supervision, Investigation, Validation.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Raza, S.M., Minerva, R., Martini, B. et al. Empowering Microservices: A Deep Dive into Intelligent Application Component Placement for Optimal Response Time. J Netw Syst Manage 32, 84 (2024). https://doi.org/10.1007/s10922-024-09855-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10922-024-09855-3