Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Solutions for the Deployment of Communication Roadside Infrastructure for Streaming Delivery in Vehicular Networks

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The future of mobility involves the interconnection of the entities of the transportation system (vehicles, roads, traffic lights, pedestrians) in high speed networks providing real-time information to drivers, entertainment for passengers, and a wide variety of applications and systems dedicated to smart transportation. Furthermore, in a few years, autonomous vehicles are going to massively reach the streets, and their interconnection may drastically improve the urban mobility by reducing the travel time and the number of accidents. In this work, we consider the design and management of the network infrastructure for vehicular communication focusing on streaming delivery. We intend to allow a given share of vehicles driving along the road network permanently playing streams received from the network infrastructure, and our main question is where we must provide coverage for achieving a given share of vehicles receiving the media. As parameters, we consider the download data rate that vehicles receive content from the infrastructure, and data consumption rate inside vehicles. An Integer Linear Program formulation along with a tabu search-based heuristic are presented. We consider as baseline the intuitive deployment strategy of covering the most popular locations of the road network. All strategies are evaluated considering a realistic vehicular mobility trace composed of 75, 515 vehicles. Results indicate that the tabu search heuristic is able to solve a large instance composed of 75, 515 vehicles requiring less covered area than greedy heuristics. Considering the optimal solution, we investigate the solutions on a reduced subset composed of 100 vehicle trips and, considering this reduced scenario, the tabu search heuristic is able to find the optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Available at: http://kolntrace.project.citi-lab.fr/

References

  1. Aslam, B., Amjad, F., Zou, C.: Optimal roadside units placement in urban areas for vehicular networks. In: 2012 IEEE Symposium on Computers and Communications (ISCC), IEEE, pp. 000423–000429 (2012). https://doi.org/10.1109/ISCC.2012.6249333

  2. Bakıcı, T., Almirall, E., Wareham, J.: A smart city initiative: the case of Barcelona. J. Knowledge Econ. 4(2), 135–148 (2013)

    Article  Google Scholar 

  3. Barrachina, J., Garrido, P., Fogue, M., Martinez, F.J., Cano, J.C., Calafate, C.T., Manzoni, P.: Road side unit deployment: a density-based approach. IEEE Intell. Transp. Syst. Mag. 5(3), 30–39 (2013). https://doi.org/10.1109/MITS.2013.2253159

    Article  Google Scholar 

  4. Bazzi, A., Masini, B.M., Andrisano, O.: On the frequent acquisition of small data through Rach in umts for its applications. IEEE Trans. Veh. Technol. 60(7), 2914–2926 (2011). https://doi.org/10.1109/TVT.2011.2160211

    Article  Google Scholar 

  5. Bruno, R., Nurchis, M.: Robust and efficient data collection schemes for vehicular multimedia sensor networks. In: 2013 IEEE 14th International Symposium and Workshops on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp 1–10 (2013). https://doi.org/10.1109/WoWMoM.2013.6583399

  6. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Oper. Res. 47(5), 730–743 (1999). https://doi.org/10.1287/opre.47.5.730

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, H., Fei, X., Boukerche, A., Mammeri, A., Almulla, M.: A geometry-based coverage strategy over urban vanets. In: Proceedings of the 10th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, PE-WASUN ’13, pp 121–128, (2013). https://doi.org/10.1145/2507248.2507250

  8. Fiems, D., Vinel, A.: Connectivity times in vehicular networks. IEEE Commun. Lett. 22(11), 2270–2273 (2018)

    Article  Google Scholar 

  9. Gao, Z., Chen, D., Cai, S., Wu, H.: Optimal and greedy algorithms for the one-dimensional rsu deployment problem with new model. IEEE Trans. Veh. Technol. 67(8), 7643–7657 (2018)

    Article  Google Scholar 

  10. Gao, Z., Chen, D., Nea, Yao: A novel problem model and solution scheme for roadside unit deployment problem in vanets. Wireless Pers. Commun. 98, 651–663 (2018). https://doi.org/10.1007/s11277-017-4888-6

    Article  Google Scholar 

  11. Gao, Z., Chen, D., Cai, S., Wu, H.: Optdynlim: an optimal algorithm for the one-dimensional rsu deployment problem with nonuniform profit density. IEEE Trans. Industr. Inf. 15(2), 1052–1061 (2019)

    Article  Google Scholar 

  12. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell, MA (1997)

    Book  Google Scholar 

  13. Hadaller, D., Keshav, S., Brecht, T.: Mv-max: improving wireless infrastructure access for multi-vehicular communication. In: Proceeding of the 2006 SIGCOMM workshop pp. 269–276 (2006). https://doi.org/10.1145/1162654.1162665

  14. Heo, J., Kang, B., Yang, J.M., Paek, J., Bahk, S.: Performance-cost tradeoff of using mobile roadside units for v2x communication. IEEE Trans. Veh. Technol. 68(9), 9049–9059 (2019)

    Article  Google Scholar 

  15. Huanhuan Yang, G.X., Jia, Zongpu: Delay-bounded and cost-limited rsu deployment in urban vehicular ad hoc networks. Sensors (Basel) 18, 2764 (2018). https://doi.org/10.3390/s18092764

    Article  Google Scholar 

  16. Hui, Y., Su, Z., Luan, T.H.: Collaborative content delivery in software-defined heterogeneous vehicular networks. IEEE/ACM Trans. Networking 28(2), 575–587 (2020)

    Article  Google Scholar 

  17. Jaeho Lee, S.A.: Adaptive configuration of mobile roadside units for the cost-effective vehicular communication infrastructure. Wireless Communications and Mobile Computing 2019, 1–15 (2019). https://doi.org/10.1155/2019/6594084

    Article  Google Scholar 

  18. Kchiche, A., Kamoun, F.: Centrality-based access-points deployment for vehicular networks. In: 2010 IEEE 17th International Conference on Telecommunications (ICT), pp. 700–706 (2010). https://doi.org/10.1109/ICTEL.2010.5478800

  19. Kim, D., Velasco, Y., Wang, W., Uma, R.N., Hussain, R., Lee, S.: A new comprehensive rsu installation strategy for cost-efficient vanet deployment. IEEE Trans. Veh. Technol. 66(5), 4200–4211 (2017)

    Google Scholar 

  20. Korkmaz, G., Ekici, E., Ozguner, F.: A cross-layer multihop data delivery protocol with fairness guarantees for vehicular networks. IEEE Trans. Veh. Technol. 55(3), 865–875 (2006). https://doi.org/10.1109/TVT.2006.873838

    Article  Google Scholar 

  21. Liang, Y., Liu, H., Rajan, D.: Optimal placement and configuration of roadside units in vehicular networks. In: 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), pp. 1–6 (2012). https://doi.org/10.1109/VETECS.2012.6240345

  22. Liu, K., Lee, V.S.: Rsu-based real-time data access in dynamic vehicular networks. In: 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1051–1056 (2010). https://doi.org/10.1109/ITSC.2010.5625189

  23. Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., Shi, W.: Edge computing for autonomous driving: opportunities and challenges. Proc. IEEE 107(8), 1697–1716 (2019). https://doi.org/10.1109/JPROC.2019.2915983

    Article  Google Scholar 

  24. Liya, X., Chuanhe, H., Peng, L., Junyu, Z.: A randomized algorithm for roadside units placement in vehicular ad hoc network. In: 2013 IEEE Ninth International Conference on Mobile Ad-hoc and Sensor Networks (MSN), pp. 193–197 (2013). https://doi.org/10.1109/MSN.2013.33

  25. Lourenço, M., Souza, F.S., Silva, C.M., Meneguette, R., Guidoni, D.: A Hybrid V2I and V2V Approach for Urban Traffic Management in Vehicular Networks. In: IEEE LATINCOM 2019 (2019)

  26. Masini, B.M., Ferrari, G., Silva, Cristiano, M., Thibault, I.: Connected Vehicles: Applications and Communication Challenges (editorial). Mobile Inf. Syst. pp 1–2 (2017). https://doi.org/10.1155/9071

  27. Mokhtari, S., Mirjalily, G., Silva, C.M., Sarubbi, J., Nogueira, J., (2020) The deployment of roadside units in vehicular networks based on the V2I connection duration. In: 16th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (WiMob 2020). Thessaloniki, Greece (2020)

  28. Patil, P., Gokhale, A.: Voronoi-based placement of road-side units to improve dynamic resource management in vehicular ad hoc networks. In: 2013 International Conference on Collaboration Technologies and Systems (CTS), pp. 389–396 (2013). https://doi.org/10.1109/CTS.2013.6567260

  29. Prospects WU (2007) World urbanization prospects: the 2007 revision

  30. Qi, W., Landfeldt, B., Song, Q., Guo, L., Jamalipour, A.: Traffic differentiated clustering routing in dsrc and c-v2x hybrid vehicular networks. IEEE Trans. Veh. Technol. 69(7), 7723–7734 (2020)

    Article  Google Scholar 

  31. Reis, A., Sargento, S., Tonguz, O.: On the performance of sparse vehicular networks with road side units. In: 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), pp 1–5 (2011). https://doi.org/10.1109/VETECS.2011.5956724

  32. Sanguesa, J.A., Fogue, M., Garrido, P., Martinez, F.J., Cano, J.C., Calafate, C.T.: A survey and comparative study of broadcast warning message dissemination schemes for vanets. Mobile Inf. Syst. 2016, e16 (2016). https://doi.org/10.1155/2016/8714142

    Article  Google Scholar 

  33. Shumao, O., Kun, Y., Hsiao-Hwa, C.: Alex G (2009) A selective downlink scheduling algorithm to enhance quality of vod services for wave networks. EURASIP J. Wirel. Commun. Netw. (2009). https://doi.org/10.1155/2009/478157

  34. Silva, C.M., Meira, Jr, W.: An architecture integrating stationary and mobile roadside units for providing communication on Intelligent Transportation Systems. In: NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, pp 358–365 (2016) https://doi.org/10.1109/NOMS.2016.7502832

  35. Silva, C.M., Silva, L.D., Santos, L.A.L., Sarubbi, J.F.M., Pitsillides, A.: Broadening understanding on managing the communication infrastructure in vehicular networks: customizing the coverage using the delta network. Future Internet (2018). https://doi.org/10.3390/fi11010001

  36. Silva, C.M., Pitangui, C.G., Miguel, E.C., Santos, L.A., Torres, K.B.: Gamma-reload deployment: planning the communication infrastructure for serving streaming for connected vehicles. Veh. Commun. 21, 100197 (2020). https://doi.org/10.1016/j.vehcom.2019.100197

    Article  Google Scholar 

  37. Silva, C.M., Meira, Jr, W.: Evaluating the performance of heterogeneous vehicular networks. In: 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), pp. 1–5 (2015) https://doi.org/10.1109/VTCFall.2015.7390936

  38. Silva, C.M., Aquino, A.L.L., Meira, W., Jr.: Deployment of roadside units based on partial mobility information. Comput. Commun. 60, 28–39 (2015). https://doi.org/10.1016/j.comcom.2015.01.021

    Article  Google Scholar 

  39. Silva, C.M., Aquino, ALL, Meira, Jr, W.: Smart traffic light for low traffic conditions. Mob. Netw. Appl. pp. 1–9 (2015). https://doi.org/10.1007/s11036-015-0571-x

  40. Silva, C.M., Guidoni, D., Souza, F.S., Pitangui, C., Pitsillides, A.: Using the inter-contact time for planning the distribution of roadside units in vehicular networks. In: 19th IEEE International Conference on Intelligent Transportation Systems (ITSC 2016), Rio de Janeiro, Brazil (2016)

  41. Silva, C.M., Guidoni, D.L., Souza, F.S.H., Pitangui, C.G., Sarubbi, J.F.M., Pitsillides, A.: Gamma deployment: designing the communication infrastructure in vehicular networks assuring guarantees on the V2I inter-contact time. In: 2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 263–271 (2016). https://doi.org/10.1109/MASS.2016.041

  42. Silva, Cristiano M., Meira, W., Sarubbi, J.F.M.: Non-intrusive planning the roadside infrastructure for vehicular networks. IEEE Trans. Intell. Transp. Syst. 17(4), 938–947 (2016). https://doi.org/10.1109/TITS.2015.2490143

    Article  Google Scholar 

  43. Silva, Cristiano M., Masini, B.M., Ferrari, G., Thibault, I.: A survey on infrastructure-based vehicular networks. Mob. Inf. Syst. 2017, 28–56 (2017). https://doi.org/10.1155/2017/6123868

    Article  Google Scholar 

  44. Silva, C.M., Silva, F.A., Sarubbi, J.F., Oliveira, T.R., Meira, W., Jr., Nogueira, J.M.S.: Designing mobile content delivery networks for the Internet of vehicles. Veh. Commun. 8, 45–55 (2017). https://doi.org/10.1016/j.vehcom.2016.11.003

    Article  Google Scholar 

  45. Sommer, C., Eckhoff, D., Dressler, F.: IVC in cities: signal attenuation by buildings and how parked cars can improve the situation. IEEE Transactions on Mobile Computing (2013). https://doi.org/10.1109/TMC.2013.80

  46. Sou, S.I., Tonguz, O.: Enhancing vanet connectivity through roadside units on highways. IEEE Trans. Veh. Technol. 60(8), 3586–3602 (2011). https://doi.org/10.1109/TVT.2011.2165739

    Article  Google Scholar 

  47. Tang, C., Zhu, C., Wei, X., Wu, H., Li, Q., Rodrigues, J.J.P.C.: Intelligent resource allocation for utility optimization in rsu-empowered vehicular network. IEEE Access 8, 94453–94462 (2020)

    Article  Google Scholar 

  48. Trullols, O., Fiore, M., Casetti, C., Chiasserini, C., Ordinas, J.B.: Planning roadside infrastructure for information dissemination in intelligent transportation systems. Comput. Commun. 33(4), 432–442 (2010). https://doi.org/10.1016/j.comcom.2009.11.021

    Article  Google Scholar 

  49. Trullols-Cruces, O., Fiore, M., Barcelo-Ordinas, J.: Cooperative download in vehicular environments. IEEE Trans. Mob. Comput. 11(4), 663–678 (2012)

    Article  Google Scholar 

  50. Uppoor, S., Trullols-Cruces, O., Fiore, M., Barcelo-Ordinas, J.M.: Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Trans. Mob. Comput. 13(5), 1061–1075 (2014)

    Article  Google Scholar 

  51. Wang, W.: Deployment and optimization of wireless network node deployment and optimization in smart cities. Comput. Commun. 155, 117–124 (2020). https://doi.org/10.1016/j.comcom.2020.03.022

    Article  Google Scholar 

  52. Wang, Y., Zheng, J.: Connectivity analysis of a highway with one entry/exit and multiple roadside units. IEEE Trans. Veh. Technol. 67(12), 11705–11718 (2018)

    Article  Google Scholar 

  53. Wang, Y., Zheng, J., Mitton, N.: Delivery delay analysis for roadside unit deployment in vehicular ad hoc networks with intermittent connectivity. IEEE Trans. Veh. Technol. 65(10), 8591–8602 (2016)

    Article  Google Scholar 

  54. Xeros, A., Saeed, T., Lestas, M., Andreou, M., Silva, C.M., Pitsillides, A.: Adaptive probabilistic flooding for information hovering in VANETs. J. Sensor Actu. Netw. (2020) https://doi.org/10.3390/jsan9020029

  55. Xue, L., Yang, Y., Dong, D.: Roadside infrastructure planning scheme for the urban vehicular networks. Transp. Res. Proc. 25, 1380–1396 (2017). https://doi.org/10.1016/j.trpro.2017.05.163

    Article  Google Scholar 

  56. Zhang, Y., Zhao, J., Cao, G.: Service scheduling of vehicle-roadside data access. Mob. Netw. Appl. 15(1), 83–96 (2010). https://doi.org/10.1007/s11036-009-0170-9

    Article  Google Scholar 

  57. Zheng, Z., Sinha, P., Kumar, S.: Alpha coverage: bounding the interconnection gap for vehicular internet access. In: INFOCOM 2009, IEEE, pp. 2831–2835 (2009). https://doi.org/10.1109/INFCOM.2009.5062241

  58. Zhou, H., Xu, W., Chen, J., Wang, W.: Evolutionary v2x technologies toward the internet of vehicles: challenges and opportunities. Proc. IEEE 108(2), 308–323 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the EM-VANETS project, CNPq (National Council for Scientific and Technological Development) Grants 303933/2017-8 and 305381/2020-2, CAPES (Coordination for the Improvement of Higher Education Personnel), FAPEMIG (Foundations for Supporting Research in the state of Minas Gerais) Grants APQ-02145-18, APQ-01708-18 and APQ-03120-17, FAPESP (São Paulo Research Foundation) Grant 2020/05126-6 and the Federal University of São João del-Rei (UFSJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Guidoni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.M., de Souza, F.S.H., Pitsillides, A. et al. Solutions for the Deployment of Communication Roadside Infrastructure for Streaming Delivery in Vehicular Networks. J Netw Syst Manage 29, 32 (2021). https://doi.org/10.1007/s10922-021-09600-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-021-09600-0

Keywords

Navigation