Abstract
Nowadays, the Internet of Things (IoT) allows monitoring and automation in diverse contexts, such as hospitals, homes, or even smart cities, just to name a few examples. IoT data processing may occur, at the edge of the network or in the cloud, but frequently the processing must be divided between the two layers. Aiming to guarantee that the IoT systems works efficiently, it is essential to evaluate the system even in initial design stages. However, evaluating hybrid systems composed by multiple layers is not an easy task as a myriad of parameters are involved in the process. Thus, this paper presents two SPN models (one base and extended one) that can represent an abstract distributed system composed of IoT, edge and cloud layers. The models are highly configurable to be used in diverse simulation scenarios. Besides a sensitivity analysis evidenced the most impacting components in the studied architecture and made it possible to optimize the base SPN model. Finally a case study explores multiple metrics of interest concurrently and works as a guide of the model utilization. Ultimately, the proposed approach can assist system designers to avoid unnecessary investment in original equipment.
Similar content being viewed by others
References
Aceto, G., Persico, V., Pescapé, A.: Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. J. Ind. Inf. Integr. 100129 (2020)
Zhao, Z., Zhou, W., Deng, D., Xia, J., Fan, L.: Intelligent mobile edge computing with pricing in internet of things. IEEE Access 8, 37727–37735 (2020)
Patel, M., Naughton, B., Chan, C, Sprecher, N., Abeta, S., Neal, A. et al.: Mobile-edge computing introductory technical white paper. White paper, mobile-edge computing (MEC) industry initiative, 1089–7801 (2014)
Wei, H., Luo, H., Sun, Y.: Mobility-aware service caching in mobile edge computing for internet of things. Sensors 20(3), 610 (2020)
Khan, L.U., Yaqoob, I., Tran, N.H., Kazmi, S.M., Ahsan, D., Nguyen, T., Hong, C.S.: Edge computing enabled smart cities: a comprehensive survey. IEEE Internet of Things J. (2020)
Dang, L.M., Piran, M., Han, D., Min, K., Moon, H.: A survey on internet of things and cloud computing for healthcare. Electronics 8(7), 768 (2019)
Dizdarević, J., Carpio, F., Jukan, A., Masip-Bruin, X.: A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration. ACM Comput. Surv. (CSUR) 51(6), 1–29 (2019)
Sharma, G., Kalra, S.: A lightweight user authentication scheme for cloud-IoT based healthcare services. Iran. J. Sci. Technol. Trans. Electr. Eng. 43(1), 619–636 (2019)
Silva, F.F.F.A., Kosta, S., Rodrigues, M., Oliveira, D., Maciel, T., Mei, A., Maciel, P.: Mobile cloud performance evaluation using stochastic models. IEEE Trans. Mob. Comput. 17(5), 1134–1147 (2017)
Silva, F.A., Rodrigues, M., Maciel, P., Kosta, S., Mei, A.: Planning mobile cloud infrastructures using stochastic petri nets and graphic processing units. In 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 471–474. IEEE (2015)
Silva, F.A., Fé, I., Gonçalves, G.: Stochastic models for performance and cost analysis of a hybrid cloud and fog architecture. J. Supercomput. (2020)
Oliveira, D., Brinkmann, A., Rosa, N., Maciel, P.: Performability evaluation and optimization of workflow applications in cloud environments. J. Grid Comput. 17(4), 749–770 (2019)
Silva, B., Matos, R., Tavares, E., Maciel, P., Zimmermann, A.: Sensitivity analysis of an availability model for disaster tolerant cloud computing system. Int. J. Netw. Manag. 28(6), e2040 (2018)
Li, A., Kusuma, G., James, D., Lim, R.: Design of experiment (doe) approach to identify critical parameters in a counterflow centrifugation system. Cytotherapy 22(5), S151–S152 (2020)
Jiang, F.-C., Hsu, C.-H., Wang, S.: Logistic support architecture with petri net design in cloud environment for services and profit optimization. IEEE Trans. Serv. Comput. 10(6), 879–888 (2016)
Santos, G.L., Endo, P.T., Gonçalves, G., Rosendo, D., Gomes, D., Kelner, J., Sadok, D., Mahloo, M.: Analyzing the it subsystem failure impact on availability of cloud services. In: 2017 IEEE Symposium on Computers and Communications (ISCC), pp. 717–723. IEEE (2017)
Gomes, D.M., Endo, P.T., Gonçalves, G., Rosendo, D., Santos, G.L., Kelner, J., Sadok, D., Mahloo, M.: Evaluating the cooling subsystem availability on a cloud data center. In: 2017 IEEE Symposium on Computers and Communications (ISCC), pp. 736–741. IEEE (2017)
Sousa, E., Lins, F., Tavares, E., Cunha, P., Maciel, P.: A modeling approach for cloud infrastructure planning considering dependability and cost requirements. IEEE Trans. Syst. Man Cybern. Syst. 45(4), 549–558 (2014)
Melo, C., Matos, R., Dantas, J., Maciel, P.: Capacity-oriented availability model for resources estimation on private cloud infrastructure. In: 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 255–260. IEEE (2017)
Ni, L., Zhang, J., Jiang, C., Yan, C., Kan, Yu.: Resource allocation strategy in fog computing based on priced timed petri nets. IEEE Internet Things J. 4(5), 1216–1228 (2017)
Yates, R.D., Tavan, M., Hu, Y., Raychaudhuri, D.: Timely cloud gaming. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pp. 1–9. IEEE (2017)
Oueida, S., Kotb, Y., Aloqaily, M., Jararweh, Y., Baker, T.: An edge computing based smart healthcare framework for resource management. Sensors 18(12), 4307 (2018)
Rodrigues, M., Vasconcelos, B., Gomes, C., Tavares, E.: Evaluation of nosql dbms in private cloud environment: an approach based on stochastic modeling. In: 2019 IEEE International Systems Conference (SysCon), pp. 1–7. IEEE (2019)
Santos, G.L., Endo, P.T., Lisboa, M.F.F.S., Silva, L.G.F., Sadok, D., Kelner, J., Lynn, T.: Analyzing the availability and performance of an e-health system integrated with edge, fog and cloud infrastructures. J. Cloud Comput. 7(1), 16 (2018)
Ahsan, U., Bais, A.: Distributed smart home architecture for data handling in smart grid. Can. J. Electr. Comput. Eng. 41(1), 17–27 (2018)
Mokhtari, G., Anvari-Moghaddam, A., Zhang, Q.: A new layered architecture for future big data-driven smart homes. IEEE Access 7, 19002–19012 (2019)
Rodrigues, L.A., Endo, P.T., da Silva, F.A.P.: Modelo estocástico para avaliação de desempenho de hospitais inteligentes. In: Anais da VII Escola Regional de Computação Aplicada à Saúde, pp. 7–12. SBC (2019)
Andrade, E., Machida, F.: Analysis of software aging impacts on plant anomaly detection with edge computing. In: 2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 204–210. IEEE (2019)
Morabito, R., Cozzolino, V., Ding, A.Y., Beijar, N., Ott, J.: Consolidate IoT edge computing with lightweight virtualization. IEEE Netw. 32(1), 102–111 (2018)
Carvalho, D., Rodrigues, L., Endo, P.T., Kosta, S., Silva, F.A.: Mobile edge computing performance evaluation using stochastic petri nets. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1–6. IEEE (2020)
Santos, G.L., Gomes, D., Kelner, J., Sadok, D., Silva, F.A., Endo, P.T., Lynn, T.: The internet of things for healthcare: optimising e-health system availability in the fog and cloud. Int. J. Comput. Sci. Eng. 21(4), 615–628 (2020)
Ferreira, L., da Silva Rocha, E., Monteiro, K.H.C., Santos, G.L., Silva, F.A., Kelner, J., Sadok, D., Filho, Carmelo, J.A.B., Rosati, P., Lynn, T. et al. Optimizing resource availability in composable data center infrastructures. In: 2019 9th Latin-American Symposium on Dependable Computing (LADC), pp. 1–10. IEEE (2019)
Rodrigues, L., Endo, P.T., Silva, F.A.: Stochastic model for evaluating smart hospitals performance. In: 2019 IEEE Latin-American Conference on Communications (LATINCOM), pp. 1–6. IEEE (2019)
El Kafhali, S., Salah, K.: Efficient and dynamic scaling of fog nodes for IoT devices. J. Supercomput. 73(12), 5261–5284 (2017)
Kleijnen, J.P.C.: Sensitivity analysis and optimization in simulation: design of experiments and case studies. In: Winter Simulation Conference Proceedings, 1995., pp. 133–140. IEEE (1995)
Silva, B., Matos, R., Callou, G., Figueiredo, J., Oliveira, D., Ferreira, J., Dantas, J., Junior, A.L., Alves, V., Maciel, P.: Mercury: An integrated environment for performance and dependability evaluation of general systems. In: Proceedings of Industrial Track at 45th Dependable Systems and Networks Conference (DSN) (2015)
Callou, G., Maciel, P., Tutsch, D., Araújo, J., Ferreira, J., Souza, R.: A petri net-based approach to the quantification of data center dependability. In: Petri Nets-Manufacturing and Computer Science, pp. 313–336 (2012)
Fe, I., Matos, R., Dantas, J., Melo, C., Maciel, P.: Stochastic model of performance and cost for auto-scaling planning in public cloud. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2081–2086. IEEE (2017)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Santos, L., Cunha, B., Fé, I. et al. Data Processing on Edge and Cloud: A Performability Evaluation and Sensitivity Analysis. J Netw Syst Manage 29, 27 (2021). https://doi.org/10.1007/s10922-021-09592-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10922-021-09592-x