Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Unsupervised Approach to Infer Quality of Service for Large-Scale Wireless Networking

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Inferring the quality of service experienced by wireless users is challenging, as network monitoring does not capture the service perception for each user individually. In this paper, we propose an unsupervised machine learning approach to infer the quality of service experienced by wireless users, based on the different usage profiles of a large-scale wireless network. To this end, our approach correlates the usage data of access points, and the summaries of connection flows passing through the access points in the network. Then, we apply the k-means clustering algorithm to infer different network usage profiles. We evaluate our proposed approach to infer QoS on a real large-scale wireless network, and the results show that discriminating the flows into five clusters allows identifying prevalent usage profiles of the degraded state of the network and overload conditions in access points, considering only the flow summaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The collected data refers to the period between April 17 and 24, 2018.

  2. The day used for the test is March 27, 2018.

  3. Available at http://w1.fi/hostapd/.

  4. Available at https://www.rsyslog.com/.

  5. Available at https://tools.netsa.cert.org/silk/.

  6. The proposal considers the Euclidean distance as a metric to indicate the separation between clusters.

  7. Available at https://pandas.pydata.org/.

  8. Available at https://scikit-learn.org/stable/.

  9. Available at https://www.knime.com/.

References

  1. Cisco, V.N.I.: Global mobile data traffic forecast update, 2016–2021 white paper, Document ID, vol. 1454457600805266, (2017)

  2. Divgi, G., Chlebus, E.: Characterization of user activity and traffic in a commercial nationwide Wi-Fi hotspot network: global and individual metrics. Wireless Netw. 19(7), 1783–1805 (2013)

    Article  Google Scholar 

  3. Mattos, D.M.F., Velloso, P.B., Duarte, O.C.M.B.: An agile and effective network function virtualization infrastructure for the Internet of Things. J. Internet Serv. Appl. 10(1), 6 (2019). https://doi.org/10.1186/s13174-019-0106-y

    Article  Google Scholar 

  4. Biswas, S., Bicket, J., Wong, E., Musaloiu-E, R., Bhartia, A., Aguayo, D.: Large-scale measurements of wireless network behavior. In: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, ser. SIGCOMM’15, pp. 153–165. ACM, London (2015). https://doi.org/10.1145/2785956.2787489

  5. Jang, R., Cho, D., Noh, Y., Nyang, D.: Rflow+: an SDN-based WLAN monitoring and management framework. In: IEEE INFOCOM 2017—IEEE Conference on Computer Communications, pp. 1–9 (2017)

  6. Yao, J., Ansari, N.: QoS-Aware fog resource provisioning and mobile device power control in IoT networks. IEEE Trans. Netw. Serv. Manag. 16(1), 167–175 (2019)

    Article  Google Scholar 

  7. Zhang, X., Wang, C., Li, Z., Zhu, J., Shi, W., Wang, Q.: Exploring the sequential usage patterns of mobile internet services based on Markov models. Electron. Commerce Res. Appl. 17, 1–11 (2016)

    Article  Google Scholar 

  8. Ghosh, A., Jana, R., Ramaswami, V., Rowland, J., Shankaranarayanan, N.K.: Modeling and characterization of large-scale Wi-Fi traffic in public hot-spots. In: 2011 Proceedings IEEE INFOCOM, pp. 2921–2929 (2011)

  9. Sen, S., Joe-Wong, C., Ha, S., Chiang, M.: A survey of smart data pricing: past proposals, current plans, and future trends. ACM Comput. Surv. 46(2), 15:1–15:37 (2013). https://doi.org/10.1145/2543581.2543582

    Article  Google Scholar 

  10. Qian, F., Wang, Z., Gerber, A., Mao, Z., Sen, S., Spatscheck, O.: Profiling resource usage for mobile applications: A cross-layer approach, In: Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, ser. MobiSys ’11, pp. 321–334. ACM, Bethesda (2011). https://doi.org/10.1145/1999995.2000026

  11. Shye, A., Scholbrock, B., Memik, G., Dinda, P.A.: Characterizing and modeling user activity on smartphones: summary. In: Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, ser. SIGMETRICS’10, pp. 375–376. ACM, New York (2010). https://doi.org/10.1145/1811039.1811094

  12. van der Hooft, J., Bouten, N., De Vleeschauwer, D., Van Leekwijck, W., Wauters, T., Latré, S., De Turck, F.: Clustering-based quality selection heuristics for HTTP adaptive streaming over cache networks. Int. J. Netw. Manag. 28(6), e2046 (2018)

    Article  Google Scholar 

  13. Oliveira, L., Obraczka, K., Rodríguez, A.: Characterizing user activity in WiFi networks: university campus and urban area case studies. In: Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, ser. MSWiM ’16, pp. 190–194. ACM, Malta (2016)

  14. Marques, J.A., Luizelli, M.C., Tavares da Costa Filho, R.I., Gaspary, L.P.: An optimization-based approach for efficient network monitoring using in-band network telemetry. J. Internet Serv. Appl. 10(1), 12 (2019). https://doi.org/10.1186/s13174-019-0112-0

    Article  Google Scholar 

  15. Joe-Wong, C., Sen, S., Ha, S.: Offering supplementary wireless technologies: adoption behavior and offloading benefits. In: 2013 Proceedings IEEE INFOCOM, pp. 1061–1069 (2013)

  16. Manweiler, J., Santhapuri, N., Choudhury, R.R., Nelakuditi, S.: Predicting length of stay at wifi hotspots. In: Proceedings IEEE INFOCOM 2013, pp. 3102–3110 (2013)

  17. Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying diverse usage behaviors of smartphone apps. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, ser. IMC’11, pp. 329–344. ACM, Berlin (2011). https://doi.org/10.1145/2068816.2068847

  18. Castanheira, L., Parizotto, R., Schaeffer-Filho, A.E.: FlowStalker: comprehensive traffic flow monitoring on the data plane using P4. In: ICC 2019—2019 IEEE International Conference on Communications (ICC), pp. 1–6 (2019)

  19. Dely, P., Kassler, A., Bayer, N., Einsiedler, H., Peylo, C.: Optimization of wlan associations considering handover costs. EURASIP J. Wireless Commun. Netw. 2012(1), 255 (2012)

    Article  Google Scholar 

  20. Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Quality of Experience (QoE)-aware placement of applications in fog computing environments. J. Parallel Distrib. Comput. 132, 190–203 (2019)

    Article  Google Scholar 

  21. Laghari, K.u.R., Crespi, N., Molina, B., Palau, C.E.: QoE aware service delivery in distributed environment. In: 2011 IEEE Workshops of International Conference on Advanced Information Networking and Applications, pp. 837–842 (2011)

  22. Mattos, D.M.F., Duarte, O.C.M.B., Pujolle, G.: Reverse update: a consistent policy update scheme for software-defined networking. IEEE Commun. Lett. 20(5), 886–889 (2016)

    Article  Google Scholar 

  23. Andreoni Lopez, M., Silva, R.S., Alvarenga, I., Rebello, G., Sanz, I.J., Lobato, A., Mattos, D., Duarte, O.C.M.B., Pujolle, G.: Collecting and characterizing a real broadband access network traffic dataset. In: 2017 1st Cyber Security in Networking Conference (CSNet’17), Rio de Janeiro, Brazil, (2017)

  24. Wang, Y., Yang, J., Chen, Y., Liu, H., Gruteser, M., Martin, R.P.: Tracking human queues using single-point signal monitoring. In: Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, ser. MobiSys ’14, pp. 42–54. ACM, New York (2014). https://doi.org/10.1145/2594368.2594382

  25. Guo, X., Chan, E.C.L., Liu, C., Wu, K., Liu, S., M, L.: Ni, Shopprofiler: profiling shops with crowdsourcing data. In: IEEE INFOCOM 2014—IEEE Conference on Computer Communications, pp. 1240–1248 (2014)

  26. Balbi, H., Fernandes, N., Souza, F., Carrano, R., Albuquerque, C., Muchaluat-Saade, D., Magalhaes, L.: Centralized channel allocation algorithm for ieee 802.11 networks. In: 2012 Global Information Infrastructure and Networking Symposium (GIIS), pp. 1–7 (2012)

  27. Li, B., Springer, J., Bebis, G., Gunes, M.H.: A survey of network flow applications. J. Netw. Comput. Appl. 36(2), 567–581 (2013)

    Article  Google Scholar 

  28. de Oliveira, N.R., Reis, L.H.A., Fernandes, N.C.F., Malcher Bastos, C.A., Medeiros, D.S.V., Mattos, D.M.F.: Natural language processing characterization of recurring calls in public security services. In: ICNC 2020—International Conference on Computing, Networking and Communications (ICNC): Social Computing and Semantic Data Mining (ICNC’20 SCSD), (2020)

Download references

Funding

This research is supported by CNPq (437085/2018-0), CAPES, RNP, and FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo M. F. Mattos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, L.H.A., Magalhães, L.C.S., de Medeiros, D.S.V. et al. An Unsupervised Approach to Infer Quality of Service for Large-Scale Wireless Networking. J Netw Syst Manage 28, 1228–1247 (2020). https://doi.org/10.1007/s10922-020-09530-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-020-09530-3

Keywords

Navigation