Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Immersive Interconnected Virtual and Augmented Reality: A 5G and IoT Perspective

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Despite remarkable advances, current augmented and virtual reality (AR/VR) applications are a largely individual and local experience. Interconnected AR/VR, where participants can virtually interact across vast distances, remains a distant dream. The great barrier that stands between current technology and such applications is the stringent end-to-end latency requirement, which should not exceed 20 ms in order to avoid motion sickness and other discomforts. Bringing AR/VR to the next level to enable immersive interconnected AR/VR will require significant advances towards 5G ultra-reliable low-latency communication (URLLC) and a Tactile Internet of Things (IoT). In this article, we articulate the technical challenges to enable a future AR/VR end-to-end architecture, that combines 5G URLLC and Tactile IoT technology to support this next generation of interconnected AR/VR applications. Through the use of IoT sensors and actuators, AR/VR applications will be aware of the environmental and user context, supporting human-centric adaptations of the application logic, and lifelike interactions with the virtual environment. We present potential use cases and the required technological building blocks. For each of them, we delve into the current state of the art and challenges that need to be addressed before the dream of remote AR/VR interaction can become reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://datatracker.ietf.org/wg/detnet/about/.

  2. https://www.fiware.org/.

  3. https://www.nabto.com/.

  4. https://github.com/Netflix/vmaf.

References

  1. Bastug, E., Bennis, M., Medard, M., Debbah, M.: Toward interconnected virtual reality: Opportunities, challenges, and enablers. IEEE Commun. Magaz. 55(6), 110–117 (2017). https://doi.org/10.1109/MCOM.2017.1601089

    Article  Google Scholar 

  2. Aijaz, A., Dohler, M., Aghvami, A.H., Friderikos, V., Frodigh, M.: Realizing the tactile internet: Haptic communications over next generation 5G cellular networks. IEEE Wireless Commun. 24(2), 82–89 (2017)

    Article  Google Scholar 

  3. Mangiante, S., Klas, G., Navon, A., GuanHua, Z., Ran, J., Dias Silva, M.: VR is on the edge: How to deliver 360-videos in mobile networks. In: Workshop on Virtual Reality and Augmented Reality Network (VR/AR Network), pp. 30–35 (2017). https://doi.org/10.1145/3097895.3097901

  4. Elbamby, M.S., Perfecto, C., Bennis, M., Doppler, K.: Toward low-latency and ultra-reliable virtual reality. IEEE Netw. 32(2), 78–84 (2018). https://doi.org/10.1109/MNET.2018.1700268

    Article  Google Scholar 

  5. Finn, N.: Introduction to time-sensitive networking. IEEE Commun. Stand. Magaz. 2(2), 22–28 (2018)

    Article  Google Scholar 

  6. Zhang, H., Elmokashfi, A., Yang, Z., Mohapatra, P.: Wireless access to ultimate virtual reality 360-degree video at home. In: International Conference on Internet of Things Design and Implementation, pp. 271–272 (2019)

  7. Baños-Gonzalez, V., Afaqui, M., Lopez-Aguilera, E., Garcia-Villegas, E.: IEEE 802.11ah: A technology to face the IoT challenge. Sensors 16(11) (2016). https://doi.org/10.3390/s16111960

  8. Khorov, E., Kiryanov, A., Lyakhov, A., Bianchi, G.: A tutorial on IEEE 802.11ax high efficiency WLANs. IEEE Commun. Surv. Tutor. 21(1), 197–216 (2019). https://doi.org/10.1109/COMST.2018.2871099

    Article  Google Scholar 

  9. Zhou, P., Cheng, K., Han, X., Fang, X., Fang, Y., He, R., Long, Y., Liu, Y.: IEEE 802.11ay-based mmWave WLANs: design challenges and solutions. IEEE Commun. Surv. Tutor. 20(3), 1654–1681 (2018). https://doi.org/10.1109/COMST.2018.2816920

    Article  Google Scholar 

  10. Beyene, Y.D., Jantti, R., Tirkkonen, O., Ruttik, K., Iraji, S., Larmo, A., Tirronen, T., Torsner, J.: NB-IoT technology overview and experience from cloud-RAN implementation. IEEE Wireless Commun. 24(3), 26–32 (2017). https://doi.org/10.1109/MWC.2017.1600418

    Article  Google Scholar 

  11. Lien, S.Y., Shieh, S.L., Huang, Y., Su, B., Hsu, Y.L., Wei, H.Y.: 5G new radio: waveform, frame structure, multiple access, and initial access. IEEE Commun. Magaz. 55(6), 64–71 (2017). https://doi.org/10.1109/MCOM.2017.1601107

    Article  Google Scholar 

  12. Lopez, A.V., Chervyakov, A., Chance, G., Verma, S., Tang, Y.: Opportunities and challenges of mmWave NR. IEEE Wireless Commun. 26(2), 4–6 (2019). https://doi.org/10.1109/MWC.2019.8700132

    Article  Google Scholar 

  13. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A.I., Dai, H.: A survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Commun. Surv. Tutor. 20(4), 3098–3130 (2018). https://doi.org/10.1109/COMST.2018.2841349

    Article  Google Scholar 

  14. Barbarossa, S., Ceci, E., Merluzzi, M.: Overbooking radio and computation resources in mmW-mobile edge computing to reduce vulnerability to channel intermittency. In: European Conference on Networks and Communications (EuCNC) (2017). https://doi.org/10.1109/EuCNC.2017.7980746

  15. di Pietro, N., Merluzzi, M., Calvanese Strinati, E., Barbarossa, S.: Resilient design of 5G mobile-edge computing over intermittent mmWave links (2019)

  16. Nielsen, J.J., Liu, R., Popovski, P.: Ultra-reliable low latency communication using interface diversity. IEEE Trans. Commun. 66(3), 1322–1334 (2018)

    Article  Google Scholar 

  17. Drago, M., Azzino, T., Polese, M., Stefanović, C., Zorzi, M.: Reliable video streaming over mmWave with multi connectivity and network coding. In: International Conference on Computing, Networking and Communications (ICNC), pp. 508–512 (2018)

  18. De Schepper, T., Bosch, P., Zeljkovic, E., Mahfoudhi, F., Haxhibeqiri, J., Hoebeke, J., Famaey, J., Latre, S.: ORCHESTRA: Enabling inter-technology network management in heterogeneous wireless networks. IEEE Trans. Netw. Serv. Manag. 15(4), 1733–1746 (2018)

    Article  Google Scholar 

  19. Sur, S., Venkateswaran, V., Zhang, X., Ramanathan, P.: 60 GHz indoor networking through flexible beams: A link-level profiling. SIGMETRICS Perform. Eval. Rev. 43(1), 71–84 (2015)

    Article  Google Scholar 

  20. Palacios, J., Casari, P., Assasa, H., Widmer, J.: LEAP: Location estimation and predictive handover with consumer-grade mmWave devices. In: IEEE Conference on Computer Communications (INFOCOM), pp. 2377–2385 (2019)

  21. Braden, B., Zhang, L., Berson, S., Herzog, S., Jamin, S.: Resource ReSerVation Protocol (RSVP) - Version 1 Functional Specification. RFC 2205, (1997)

  22. Nasrallah, A., Balasubramanian, V., Thyagaturu, A., Reisslein, M., ElBakoury, H.: TSN Algorithms for Large Scale Networks: A Survey and Conceptual Comparison (2019)

  23. Messenger, J.L.: Time-sensitive networking: an introduction. IEEE Commun. Stand. Magaz. 2(2), 29–33 (2018)

    Article  Google Scholar 

  24. Kua, J., Armitage, G., Branch, P.: A survey of rate adaptation techniques for dynamic adaptive streaming over http. IEEE Commun. Surv. Tutor. 19, 1842–1866 (2017)

    Article  Google Scholar 

  25. He, D., Westphal, C., Garcia-Luna-Aceves, J.: Network support for ar/vr and immersive video application: A survey. pp. 359–369 (2018). https://doi.org/10.5220/0006941703590369

  26. Abdallah, M., Griwodz, C., Chen, K.T., Simon, G., Wang, P.C., Hsu, C.H.: Delay-sensitive video computing in the cloud: a survey. ACM Trans. Multimedia Comput. Commun. Appl. 14, 3 (2018). https://doi.org/10.1145/3212804

    Article  Google Scholar 

  27. Lakiotakis, E., Liaskos, C., Dimitropoulos, X.: Improving networked music performance systems using application-network collaboration. Concurrency and Computation: Practice and Experience (2018). https://doi.org/10.1002/cpe.4730

  28. Wang, M., Cui, Y., Wang, G., Xiao, S., Jiang, J.: Machine learning for networking: Workflow, advances and opportunities. IEEE Network PP (2017). https://doi.org/10.1109/MNET.2017.1700200

  29. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.F., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gülçehre, Ç., Song, H.F., Ballard, A.J., Gilmer, J., Dahl, G.E., Vaswani, A., Allen, K.R., Nash, C., Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M., Vinyals, O., Li, Y., Pascanu, R.: Relational inductive biases, deep learning, and graph networks. CoRR abs/1806.01261 (2018) URL arXiv:1806.01261

  30. Davie, B., Koponen, T., Pettit, J., Pfaff, B., Casado, M., Gude, N., Padmanabhan, A., Petty, T., Duda, K., Chanda, A.: A database approach to sdn control plane design. SIGCOMM Comput. Commun. Rev. 47(1), 15–26 (2017). https://doi.org/10.1145/3041027.3041030

    Article  Google Scholar 

  31. Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet-Ros, P., Alarcón, E., Solé, M., Muntés-Mulero, V., Meyer, D., Barkai, S., Hibbett, M.J., et al.: Knowledge-defined networking. SIGCOMM Comput. Commun. Rev. 47(3), 2–10 (2017). https://doi.org/10.1145/3138808.3138810

    Article  Google Scholar 

  32. Lakiotakis, E., Liaskos, C., Dimitropoulos, X.A.: Improving networked music performance systems using application-network collaboration. CoRR abs/1808.09405 (2018) URL arXiv:1808.09405

  33. Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K., Hanzo, L.: Machine learning paradigms for next-generation wireless networks. IEEE Wireless Commun. 24(2), 98–105 (2017). https://doi.org/10.1109/MWC.2016.1500356WC

    Article  Google Scholar 

  34. Suárez-Varela, J., Mestres, A., Yu, J., Kuang, L., Feng, H., Cabellos-Aparicio, A., Barlet-Ros, P.: Routing in optical transport networks with deep reinforcement learning. J. Opt. Commun. Netw. 11(11), 547–558 (2019). https://doi.org/10.1364/JOCN.11.000547. http://jocn.osa.org/abstract.cfm?URI=jocn-11-11-547

  35. Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., Flinck, H.: Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun. Surv. Tutor. 20(3), 2429–2453 (2018). https://doi.org/10.1109/COMST.2018.2815638

    Article  Google Scholar 

  36. Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A., Leung, V.C.M.: Network slicing based 5g and future mobile networks: mobility, resource management, and challenges. IEEE Commun. Magaz. 55(8), 138–145 (2017). https://doi.org/10.1109/MCOM.2017.1600940

    Article  Google Scholar 

  37. Li, R., Zhao, Z., Sun, Q., C, I., Yang, C., Chen, X., Zhao, M., Zhang, H.: Deep reinforcement learning for resource management in network slicing. IEEE Access. 6, 74429–74441 (2018). https://doi.org/10.1109/ACCESS.2018.2881964

    Article  Google Scholar 

  38. Li, R., Zhao, Z., Zhou, X., Ding, G., Chen, Y., Wang, Z., Zhang, H.: Intelligent 5g: when cellular networks meet artificial intelligence. IEEE Wireless Commun. 24(5), 175–183 (2017). https://doi.org/10.1109/MWC.2017.1600304WC

    Article  Google Scholar 

  39. Luong, N.C., Hoang, D.T., Gong, S., Niyato, D., Wang, P., Liang, Y.C., Kim, D.I.: Applications of deep reinforcement learning in communications and networking: A survey. IEEE Commun. Surv. Tutor. 21(4), 3133–3174 (2019)

    Article  Google Scholar 

  40. Bellemare, M.G., Dabney, W., Munos, R.: A distributional perspective on reinforcement learning. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 449–458. JMLR. org (2017)

  41. Hua, Y., Li, R., Zhao, Z., Chen, X., Zhang, H.: Gan-powered deep distributional reinforcement learning for resource management in network slicing. IEEE Journal on Selected Areas in Communications (2019)

  42. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Article  Google Scholar 

  43. Zhang, C., Patras, P., Haddadi, H.: Deep learning in mobile and wireless networking: a survey. IEEE Commun. Surv. Tutor. 21(3), 2224–2287 (2019)

    Article  Google Scholar 

  44. Liaskos, C., Tsioliaridou, A., Ioannidis, S.: The socket store: An app model for the application-network interaction. In: IEEE ISCC 2017 (2017)

  45. Cloud, J., Leith, D., Médard, M.: A coded generalization of selective repeat arq. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 2155–2163 (2015). https://doi.org/10.1109/INFOCOM.2015.7218601

  46. Papadopoulos, I., Papanikos, N., Papapetrou, E., Kondi, L.: Network-wide md and network coding for heterogeneous video multicast. In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 3578–3582 (2013). https://doi.org/10.1109/PIMRC.2013.6666770

  47. Zhu, Q., Wang, R., Chen, Q., Liu, Y., Qin, W.: IOT Gateway: Bridging Wireless Sensor Networks into Internet of Things. In: IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, pp. 347–352 (2010)

  48. Chen, H., Jia, X., Li, H.: A brief introduction to IoT gateway. In: Communication Technology and Application (ICCTA 2011), IET International Conference on, pp. 610 – 613 (2011)

  49. Chellough, S.A., El-Zawawy, M.A.: Middleware for internet of things: survey and challenges. Intell. Autom. Soft Comput. 24(2), 309–318 (2018)

    Article  Google Scholar 

  50. Dickerson, K., Heinz, C., García-Castro, R., et al.: Analysis of Standardisation Context and Recommendations for Standards Involvement (2016). https://vicinity2020.eu/vicinity/sites/default/files/documents/vicinity_d2.1_analysis_of_standardisation_context_and_recommendations_for_standards_involvement.pdf

  51. Nakhuva, B., Champaneria, T.: Study of various internet of things platforms. Int. J. Comput. Sci. Eng. Surv. 6(6), 61–74 (2015)

    Article  Google Scholar 

  52. Gomes, P., Cavalcante, E., Batista, T., Taconet, C., Conan, D., Chabridon, S., Delicato, F.C., Pires, P.F.: A semantic-based discovery service for the internet of things. J. Internet Serv. Appl. (2019). https://doi.org/10.1186/s13174-019-0109-8

    Article  Google Scholar 

  53. Song, Z., Cardenas, A., Masuoka, R.: Semantic middleware for the internet of things. In: 2010 Internet of Things (IOT), pp. 1–8 (2011). https://doi.org/10.1109/IOT.2010.5678448

  54. Wang, W., Lee, K., Guo, J., Murray, D.: Discovering objects and services in context-aware iot environments. Int. J. Serv. Technol. Manag. 25(3/4), 326–347 (2019). https://doi.org/10.1504/IJSTM.2019.10021608

    Article  Google Scholar 

  55. Kostelnik, P., Sarnovsky, M., Furdík, K.: The semantic middleware for networked embedded systems applied in the internet of things and services domain. Scalable Comput. 12(3), 307–315 (2011)

    Google Scholar 

  56. Guan, Y., Vasquez, J.C., Guerrero, J.M., Samovich, N., Vanya, S., Oravec, V., Garcí-Castro, R., Serena, F., Poveda-Villalón, M., Radojicic, C., Heinz, C., Grimm, C., Tryferidis, A., Tzovaras, D., Dickerson, K., Paralic, M., Skokan, M., Sabol, T.: An open virtual neighbourhood network to connect iot infrastructures and smart objects — vicinity: Iot enables interoperability as a service. In: 2017 Global Internet of Things Summit (GIoTS), pp. 1–6 (2017). https://doi.org/10.1109/GIOTS.2017.8016233

  57. Alam, M.F., Katsikas, S., Beltramello, O., Hadjiefthymiades, S.: Augmented and virtual reality based monitoring and safety system: A prototype iot platform. Journal of Network and Computer Applications 89, 109–119 (2017). https://doi.org/10.1016/j.jnca.2017.03.022. http://www.sciencedirect.com/science/article/pii/S1084804517301315. Emerging Services for Internet of Things (IoT)

  58. Antonakoglou, K., Xu, X., Steinbach, E., Mahmoodi, T., Dohler, M.: Toward haptic communications over the 5g tactile internet. IEEE Commun. Surv. Tutor. 20(4), 3034–3059 (2018)

    Article  Google Scholar 

  59. Hooft, J.V., Vega, M., Petrangeli, S., Wauters, T., Turck, F.D.: Tile-based adaptive streaming for virtual reality video. ACM Trans. Multimedia Comput. Commun. Appl. 15, 4 (2019). https://doi.org/10.1145/3362101

    Article  Google Scholar 

  60. Clemm, A., Torres Vega, M., Ravuri, H.K., Wauters, T., Turck, F.D.: Toward truly immersive holographic-type communication: challenges and solutions. IEEE Commun. Magaz. 58(1), 93–99 (2020)

    Article  Google Scholar 

  61. Palmer, M., Krüger, T., Chandrasekaran, B., Feldmann, A.: The quic fix for optimal video streaming. In: Proceedings of the Workshop on the Evolution, Performance, and Interoperability of QUIC, EPIQ’18, p. 43–49. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3284850.3284857

  62. King, H.H., Hannaford, B., Kammerly, J., Steinbachy, E.: Establishing multimodal telepresence sessions using the session initiation protocol (sip) and advanced haptic codecs. In: 2010 IEEE Haptics Symposium, pp. 321–325 (2010)

  63. Nasir, Q., Khalil, E.: Perception based adaptive haptic communication protocol (pahcp). In: 2012 International Conference on Computer Systems and Industrial Informatics, pp. 1–6 (2012)

  64. Venkatraman, K., Vellingiri, S., Prabhakaran, B., Nguyen, N.: Mpeg media transport (mmt) for 3d tele-immersion systems. In: 2014 IEEE International Symposium on Multimedia, pp. 279–282 (2014)

  65. Rossol, N., Cheng, I., Bischof, W.F., Basu, A.: A framework for adaptive training and games in virtual reality rehabilitation environments. In: Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry, VRCAI ’11, p. 343–346. Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/2087756.2087810

  66. Power, D.J., Sharda, R.: Model-driven decision support systems: Concepts and research directions. Decision Support Systems 43(3), 1044–1061 (2007). https://doi.org/10.1016/j.dss.2005.05.030. http://www.sciencedirect.com/science/article/pii/S0167923605000953. Integrated Decision Support

  67. Vaughan, N., Gabrys, B., Dubey, V.N.: An overview of self-adaptive technologies within virtual reality training. Computer Science Review 22, 65–87 (2016). https://doi.org/10.1016/j.cosrev.2016.09.001. http://www.sciencedirect.com/science/article/pii/S1574013716300259

  68. Luzanin, O., Plancak, M.: Hand gesture recognition using low-budget data glove and cluster-trained probabilistic neural network. Assembly Autom. 34(1), 94–105 (2014). https://doi.org/10.1108/AA-03-2013-020

    Article  Google Scholar 

  69. Yamashita, M.: Assistive driving simulator with haptic manipulator using model predictive control and admittance control. Procedia Computer Science 39, 107–114 (2014). https://doi.org/10.1016/j.procs.2014.11.016. http://www.sciencedirect.com/science/article/pii/S1877050914014343. The 6th international conference on Intelligent Human Computer Interaction, IHCI 2014

  70. Van Damme, S., Torres Vega, M., De Turck, F.: Human-centric Quality Management of Immersive Multimedia Applications. In: in proceedings of the fourth Quality of Experience Management Workshop, collocated with NetSoft 2020. Ghent, Belgium (2020)

  71. Simsek, M., Aijaz, A., Dohler, M., Sachs, J., Fettweis, G.: 5g-enabled tactile internet. IEEE J. Select. Areas Commun. 34(3), 460–473 (2016)

    Article  Google Scholar 

  72. Skorin-Kapov, L., Varela, M., Hoßfeld, T., Chen, K.T.: A survey of emerging concepts and challenges for qoe management of multimedia services. ACM Trans. Multimedia Comput. Commun. Appl. 14, 2 (2018). https://doi.org/10.1145/3176648

    Article  Google Scholar 

  73. ITU-T: Recommendation P.910 (09/99) ITU-T RECOMMENDATION P.910: Subjective video quality assessment methods for multimedia applications (1999)

  74. Alexiou, E., Ebrahimi, T.: On subjective and objective quality evaluation of point cloud geometry. In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–3 (2017)

  75. Tran, H.T.T., Ngoc, N.P., Bui, C.M., Pham, M.H., Thang, T.C.: An evaluation of quality metrics for 360 videos. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 7–11 (2017)

  76. van der Hooft, J., Torres Vega, M., Petrangeli, S., Wauters, T., De Turck, F.: Quality Assessment for Adaptive Virtual Reality Video Streaming: A Probabilistic Approach on the User’s Gaze. In: 2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), pp. 19–24 (2019)

  77. Alexiou, E., Viola, I., Borges, T.M., Fonseca, T.A., de Queiroz, R.L., Ebrahimi, T.: A comprehensive study of the rate-distortion performance in MPEG point cloud compression. APSIPA Trans. Sign. Inform. Process 8, e27 (2019). https://doi.org/10.1017/ATSIP.2019.20

    Article  Google Scholar 

  78. Narbutt, M., Allen, A., Skoglund, J., Chinen, M., Hines, A.: AMBIQUAL - a full reference objective quality metric for ambisonic spatial audio. In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6 (2018)

  79. Sakr, N., Georganas, N.D., Zhao, J.: A Perceptual Quality Metric for Haptic Signals. In: 2007 IEEE International Workshop on Haptic, Audio and Visual Environments and Games, pp. 27–32 (2007)

  80. Hassen, R., Steinbach, E.: HSSIM: An Objective Haptic Quality Assessment Measure for Force-Feedback Signals. In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6 (2018)

  81. Wang, Zhou, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  82. De Coninck, Q., Bonaventure, O.: Multipath quic: Design and evaluation. In: Proceedings of the 13th International Conference on Emerging Networking EXperiments and Technologies, CoNEXT ’17, p. 160–166. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3143361.3143370

Download references

Acknowledgements

Maria Torres Vega is funded by the Research Foundation Flanders (FWO), grant number 12W4819N. This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under Contract TEC2017-90034-C2-1-R (ALLIANCE project) that receives funding from FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Torres Vega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres Vega, M., Liaskos, C., Abadal, S. et al. Immersive Interconnected Virtual and Augmented Reality: A 5G and IoT Perspective. J Netw Syst Manage 28, 796–826 (2020). https://doi.org/10.1007/s10922-020-09545-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-020-09545-w

Keywords

Navigation