Abstract
Residual stress of case-hardened steel samples is predicted in this paper with the linear multivariable regression model. The development of the prediction model is based on the huge set of features calculated from the Barkhausen noise measurement signal among which the most suitable ones are chosen. The selection uses a genetic algorithm with leave-multiple-out cross-validation in the objective function. The original feature set contains collinear features that make the selection task even more complex. Thus a feature elimination procedure based on the successive projections algorithm is studied in this paper. Also the standard genetic algorithm is slightly modified to better serve the feature selection task. The obtained results are good showing that the proposed procedures suit well for residual stress predictions. Also the applied feature elimination procedure is applicable and can be safely used to reduce the dimensionality of the selection problem.
Similar content being viewed by others
References
Jiles, D.C.: Dynamics of domain magnetization and the Barkhausen effect. Czechoslov. J. Phys. 50, 893–988 (2000)
Saquet, O., Chicois, J., Vincent, A.: Barkhausen noise from plain carbon steels: analysis of the influence of microstructure. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 269, 73–82 (1999)
Blaow, M., Evans, J.T., Shaw, B.A.: Effect of hardness and composition gradients on Barkhausen emission in case hardened steel. J. Magn. Magn. Mater. 303, 153–159 (2006)
Stefanita, C.-G., Atherton, D.L., Clapham, L.: Plastic versus elastic deformation effects on magnetic Barkhausen noise in steel. Acta Mater. 48, 3545–3551 (2000)
Stewart, D.M., Stevens, K.J., Kaiser, A.B.: Magnetic Barkhausen noise analysis of stress in steel. Curr. Appl. Phys. 4, 308–311 (2004)
Santa-aho, S., Vippola, M., Sorsa, A., Latokartano, J., Lindgren, M., Leiviskä, K., Lepistö, T.: Development of Barkhausen noise calibration blocks for reliable grinding burn detection. J. Mater. Process. Technol. 212, 408–416 (2012)
O’Sullivan, D., Cotterell, M., Tanner, D.A., Mészáros, I.: Characterisation of ferritic stainless steel by Barkhausen techniques. Nondestruct. Test. Eval. Int. 37, 489–496 (2004)
Blaow, M., Evans, J.T., Shaw, B.: Effect of deformation in bending on magnetic Barkhausen noise in low alloy steel. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 386, 74–80 (2004)
Moorthy, V., Choudhary, B.K., Vaidyanathan, S., Jayakumar, T., Rao, K.B.S., Raj, B.: An assessment of low cycle fatigue damage using magnetic Barkhausen emission in 9Cr-1Mo ferritic steel. Int. J. Fatigue 21, 263–269 (1999)
Santa-aho, S., Vippola, M., Sorsa, A., Leiviskä, K., Lindgren, M., Lepistö, T.: Utilization of Barkhausen noise magnetizing sweeps for case-depth detection from hardened steel. Nondestruct. Test. Eval. Int. 52, 95–102 (2012)
Sorsa, A., Leiviskä, K., Santa-aho, S., Lepistö, T.: A data-based modelling scheme for estimating residual stress from Barkhausen noise measurements. Insight 54, 278–283 (2012)
Sorsa, A., Leiviskä, K., Santa-aho, S., Lepistö, T.: Quantitative prediction of residual stress and hardness in case-hardened steel based on the Barkhausen noise measurement. Nondestruct. Test. Eval. Int. 46, 100–106 (2012)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)
Alexandridis, A., Patrinos, P., Sarimveis, H., Tsekouras, G.: A two-stage evolutionary algorithm for variable selection in the development of RBF neural network models. Chemom. Intell. Lab. Syst. 75, 149–162 (2005)
Gardner, J.W., Boilot, P., Hines, E.L.: Enhancing electronic nose performance by sensor selection using a new integer-based genetic algorithm approach. Sens. Actuators B, Chem. 106, 114–121 (2005)
Santa-aho, S., Vippola, M., Saarinen, T., Isakov, M., Sorsa, A., Lindgren, M., Leiviskä, K., Lepistö, T.: Barkhausen noise characterization during elastic bending and tensile-compression loading of case-hardened and tempered samples. J. Mater. Sci. 47, 6520–6528 (2012)
Sorsa, A., Leiviskä, K.: Comparison of feature selection methods applied to Barkhausen noise data set. In: Bittanti, S., Cenedese, A., Zampieri, S. (eds.) Preprints of the 18th IFAC World Congress, Milano, Italy, 28 August–2 September 2011. IFAC, 6p
Leardi, R., González, A.L.: Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemom. Intell. Lab. Syst. 41, 195–207 (1998)
Gauchi, J.-P., Chagnon, P.: Comparison of selection methods of explanatory variables in PLS regression with application to manufacturing process data. Chemom. Intell. Lab. Syst. 58, 171–193 (2001)
Baumann, K.: Cross-validation as the objective function for variable-selection techniques. TrAC, Trends Anal. Chem. 22, 395–406 (2003)
Piotrowski, L., Augustyniak, B., Chmielewski, M., Hristoforou, E.V., Kosmas, K.: Evaluation of Barkhausen noise and magnetoacoustic emission signals properties for plastically deformed Armco iron. IEEE Trans. Magn. 46, 239–242 (2010)
Araújo, M.C.U., Saldanha, T.C.B., Galvão, R.K.H., Yoneyama, T., Chame, H.C., Visani, V.: The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 57, 65–73 (2001)
Galvão, R.K.H., Araújo, M.C.U., Fragoso, W.D., Silva, E.C., José, G.E., Soares, S.F.C., Paiva, H.M.: A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm. Chemom. Intell. Lab. Syst. 92, 83–91 (2008)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1996)
Sorsa, A., Leiviskä, K., Santa-aho, S., Vippola, M., Lepistö, T.: A study on laser-processed grinding burn simulation and analysis on Barkhausen noise measurement. Insight 52, 293–297 (2010)
Harrell, F.E. Jr.: Regression Modeling Strategies with Applications to Linear Models, Logistic Regression, and Survival Analysis, 1st edn. Springer, New York (2001)
Stoppiglia, H., Dreyfus, G., Dubois, R., Oussar, Y.: Ranking a random feature for variable and feature selection. J. Mach. Learn. Res. 3, 1399–1414 (2003)
Hemmateenejad, B.: Correlation ranking procedure for factor selection in PC-ANN modeling and application to ADMETox evaluation. Chemom. Intell. Lab. Syst. 75, 231–245 (2005)
Zhang, Y.X.: Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis. Talanta 73, 68–75 (2007)
McLeod, G., Clelland, K., Tapp, H., Kemsley, E.K., Wilson, R.H., Poulter, G., Coombs, D., Hewitt, C.J.: A comparison of variate pre-selection methods for use in partial least squares regression: a case study on NIR spectroscopy applied to monitoring beer fermentation. J. Food Eng. 90, 300–307 (2009)
Mierczak, L., Jiles, D.C., Fantoni, G.: A new method for evaluation of mechanical stress using the reciprocal amplitude of magnetic Barkhausen noise. IEEE Trans. Magn. 47, 459–465 (2011)
Wilson, J.W., Tian, G.Y., Moorthy, V., Shaw, B.A.: Magneto-acoustic emission and magnetic Barkhausen emission for case depth measurement in En36 gear steel. IEEE Trans. Magn. 45, 177–183 (2009)
Sorsa, A.: Prediction of material properties based on non-destructive Barkhausen noise measurement. Doctoral dissertation. University of Oulu Graduate School, Acta Universitatis Ouluensis (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sorsa, A., Leiviskä, K., Santa-aho, S. et al. An Efficient Procedure for Identifying the Prediction Model Between Residual Stress and Barkhausen Noise. J Nondestruct Eval 32, 341–349 (2013). https://doi.org/10.1007/s10921-013-0187-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10921-013-0187-7