Abstract
Radiation oncology for prostate cancer is important as it can decrease the morbidity and mortality associated with this disease. Planning for this modality of treatment is both fundamental, time-consuming and prone to human-errors, leading to potentially avoidable delays in start of treatment. A fundamental step in radiotherapy planning is contouring of radiation targets, where medical specialists contouring, i.e., segment, the boundaries of the structures to be irradiated. Automating this step can potentially lead to faster treatment planning without a decrease in quality, while increasing time available to physicians and also more consistent treatment results. This can be framed as an image segmentation task, which has been studied for many decades in the fields of Computer Vision and Machine Learning. With the advent of Deep Learning, there have been many proposals for different network architectures achieving high performance levels. In this review, we searched the literature for those methods and describe them briefly, grouping those based on Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). This is a booming field, evidenced by the date of the publications found. However, most publications use data from a very limited number of patients, which presents an obstacle to deep learning models training. Although the performance of the models has achieved very satisfactory results, there is still room for improvement, and there is arguably a long way before these models can be used safely and effectively in clinical practice.
Similar content being viewed by others
References
American Cancer Society (2019) Facts & Figures 2019. Technical report, American Cancer Society
Reda I., Khalil A., Elmogy M., El-Fetouh A. A., Shalaby A., El-Ghar M. A., Elmaghraby A., Ghazal M., El-Baz A.: Deep learning role in early diagnosis of prostate cancer. Technol. Cancer. Res. Treat. 17: 1–11, 2018
Noone A. M., Howlader N., Krapcho M., Miller D., Brest A., Yu M., Ruhl J., Tatalovich Z., Mariotto A., Lewis D. R., Chen H. S., Feuer E. J., Cronin K. A. (2017) SEER Cancer statistics review. Technical report, National Cancer Institute
Nezhad M. Z., Sadati N., Yang K., Zhu D.: A Deep Active Survival Analysis approach for precision treatment recommendations Application of prostate cancer. Expert. Syst. Appl. 115: 16–26, 2019
Kazmierska J., Sala N. J., Leech M., Jereczek-Fossa B. A., Lievens Y., Yarnold J. (2018) Radiotherapy: Seizing the opportunity in cancer care. Technical report, ESTRO Cancer Foundation
Borras J. M., Lievens Y., Barton M., Corral J., Ferlay J., Bray F., Grau C.: How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis. Radiother. Oncol. 119 (1): 5–11, 2016
Borras J. M., Lievens Y., Dunscombe P., Coffey M., Malicki J., Corral J., Gasparotto C., Defourny N., Barton M., Verhoeven R., Van Eycken L., Primic-Zakelj M., Trojanowski M., Strojan P., Grau C.: The optimal utilization proportion of external beam radiotherapy in European countries: An ESTRO-HERO analysis. Radiother. Oncol. 116 (1): 38–44, 2015
Moore K. L.: Automated radiotherapy treatment planning. Semin. Radiat. Oncol. 29 (3): 209–218, 2019
Emami B., Lyman J., Brown A., Cola L., Goitein M., Munzenrider J. E., Shank B., Solin L. J., Wesson M.: Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 21 (1): 109–122, 1991
Pereira G. C., Traughber M., Muzic R. F. (2014) The role of imaging in radiation therapy planning: Past, present, and future. Biomed Res Int 2014(2)
Meyer P., Noblet V., Mazzara C., Lallement A.: Survey on deep learning for radiotherapy. Comput. Biol. Med. 98: 126–146, 2018
Gay H. A., Barthold H. J., O’Meara E., Bosch W. R., Naga I. E., Al-Lozi R., Rosenthal S. A., Lawton C., Lee W. R., Sandler H., Zietman A., Myerson R., Dawson L. A., Willett C., Kachnic L. A., Jhingran A., Portelance L., Ryu J., Small W., Gaffney D., Viswanathan A. N., Michalski J. F. (2007) Male pelvis normal tissue - RTOG consensus contouring guidelines. Technical report, Radiation Therapy Oncology Group Foundation
Fiorino C., Reni M., Bolognesi A., Cattaneo G. M., Calandrino R.: Intra- and inter-observer variability in contouring prostate and seminal vesicles: Implications for conformal treatment planning. Radiother. Oncol. 47 (3): 285–292, 1998
Gao Z., Wilkins D., Eapen L., Morash C., Wassef Y., Gerig L.: A study of prostate delineation referenced against a gold standard created from the visible human data. Radiother. Oncol. 85 (2): 239–246, 2007
Mohler J. L., Srinivas S., Antonarakis E. S., Armstrong A. J., D’Amico A. V., Davis B. J., Dorff T. (2019) Prostate cancer NCCN guidelines version 4.1029. Technical report, National Comprehensive Cancer Network
The Royal College of Radiologists, Society of Radiographers, College, Institute of Physics in Medicine, and Engineering: On target: ensuring geometric accuracy in radiotherapy. Technical report, The Royal College of Radiologists (2008)
Shen D., Wu G., Suk H.-I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19: 221–248, 2017
Suarez-Ibarrola R., Hein S., Reis G., Gratzke C., Miernik A.: Current and future applications of machine and deep learning in urology: A review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer Ml: World J Urol, 2019
Boldrini L., Bibault J.-E., Masciocchi C., Shen Y., Bittner M.-I. (2019) Deep Learning: A review for the radiation oncologist. Front Oncol 9(October)
LeCun Y., Bengio Y., Hinton G.: Deep learning. Nature 521 (7553): 436–444, 2015
Krizhevsky A., Sutskever I., Hinton G. E.: Imagenet Classification with Deep Convolutional Neural Networks. Adv. Neural. Inf. Process. Syst. 15: 474–483, 2014
LeCun Y., Boser B. E., Denker J. S., Henderson D., Howard R. E., Hubbard W. E., Jackel L. D.: Handwritten Digit Recognition with a Back-Propagation Network. In: (Touretzky D. S., Ed.) Adv Neural Inf Process Syst, vol 2. Morgan-Kaufmann, 1990, pp 396–404
Yu L., Yang X., Chen H., Qin J., Heng P.-A.: Volumetric ConvNets with Mixed Residual Connections for Automated Prostate Segmentation from 3D MR Images.. In: Thirty-First AAAI Conf Artif Intell, 2017, pp 66–72
Shelhamer E., Long J., Darrell T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern. Anal. Mach. Intell. 39: 1, 2016
Ronneberger O., Fischer P., Brox T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: (Navab N., Hornegger J., Wells W. M., Frangi A. F., Eds.) Med Image Comput Comput Interv – MICCAI 2015, Cham, 2015, pp 234–241. Springer International Publishing
Çiçek Ö., Abdulkadir A., Lienkamp S. S., Brox T., Ronneberger O. (2016) 3D U-net: Learning dense volumetric segmentation from sparse annotation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics), 9901 LNCS 424–432
Milletari F., Navab N., Ahmadi S. A. (2016) V-Net: Fully convolutional neural networks for volumetric medical image segmentation. Proc - 2016 4th Int Conf 3D Vision, 3DV 2016, pp. 565–571
Kazemifar S., Balagopal A., Nguyen D., McGuire S., Hannan R., Jiang S., Owrangi A.: Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning. Biomed. Phys. Eng. Express. 4 (5): 55003, 2018
Oktay O., Schlemper J., Folgoc L., Lee M., Heinrich M., Misawa K., Mori K., McDonagh S., Hammerla N., Kainz B., Glocker B., Rueckert D. (2018) Attention U-Net: Learning where to look for the pancreas. 1st Conf Med Imaging with Deep Learn (MIDL 2018)
Cardenas C. E., Yang J., Anderson B. M., Court L. E., Brock K. B.: Advances in Auto-Segmentation. Semin. Radiat. Oncol. 29 (3): 185–197, 2019
Litjens G., Kooi T., Bejnordi B. E., Setio A. A. A., Ciompi F., Ghafoorian M., van der Laak J. A. W. M., van Ginneken B., Sánchez C. I.: Van der A survey on deep learning in medical image analysis. Med. Image. Anal. 42 (2012): 60–88, 2017
Bi W. L., Hosny A., Schabath M. B., Giger M. L., Birkbak N. J., Mehrtash A., Allison T., Arnaout O., Abbosh C., Dunn I. F., Mak R. H., Tamimi R. M., Tempany C. M., Swanton C., Hoffmann U., Schwartz L. H., Gillies R. J., Huang R. Y., Aerts H. J. W. L.: Artificial intelligence in cancer imaging clinical challenges and applications. CA Cancer. J. Clin. 0 (0): 1–31, 2019
Sahiner B., Pezeshk A., Hadjiiski L. M., Wang X., Drukker K., Cha K. H., Summers R. M., Giger M. L.: Deep learning in medical imaging and radiation therapy. Med. Phys. 46 (1): e1–e36, 2019
Boon I., Yong T. A., Boon C.: Assessing the Role of Artificial Intelligence (AI) in Clinical Oncology: Utility of Machine Learning in Radiotherapy Target Volume Delineation. Medicines 5 (4): 131, 2018
Cuocolo R., Cipullo M. B., Stanzione A., Ugga L., Romeo V., Radice L., Brunetti A., Imbriaco M. (2019) Machine learning applications in prostate cancer magnetic resonance imaging. Eur Radiol Exp 3(1)
Larry Goldenberg S., Nir G., Salcudean S. E.: A new era: artificial intelligence and machine learning in prostate cancer. Nat. Rev. Urol. 16 (7): 391–403, 2019
Taghanaki S. A., Zheng Y., Zhou S. K., Georgescu B., Sharma P., Xu D., Comaniciu D., Hamarneh G.: Combo loss: Handling input and output imbalance in multi-organ segmentation. Comput. Med. Imaging Graph. 75: 24–33, 2019
Litjens G., Toth R., van de Ven W., Hoeks C., Kerkstra S., van Ginneken B., Vincent G., Guillard G., Birbeck N., Zhang J., Strand R., Malmberg F., Ou Y., Davatzikos C., Kirschner M., Jung F., Yuan J., Wu Q., Gao Q., Edwards P. E., Maan B., van der Heijden F., Ghose S., Mitra J., Dowling J., Barratt D., Huisman H., Madabhushi A.: Evaluation of prostate segmentation algorithms for MRI The PROMISE12 challenge. Med. Image. Anal. 18 (2): 359–373, 2014
Bloch N., Madabhushi A., Huisman H., Freymann J., Kirby J., Grauer M., Enquobahrie A., Jaffe C. (2015) Larry clarke, and keyvan farahani NCI-ISBI 2013 Challenge: Automated Segmentation of Prostate Structures
The Brigham Hospital and Women’s. BWH Prostate MR Image Database, 2008
Litjens G., Debats O., Barentsz J., Karssemeijer N., Huisman H. (2017) ProstateX Challenge data
Ke Y., Wang X., Kim J., Khadra M., Fulham M., Dagan F.: A propagation-DNN Deep combination learning of multi-level features for MR prostate segmentation. Comput. Methods Programs Biomed. 170: 11–21, 2019
Tian Z., Liu L., Zhang Z., Fei B.: PSNEt: prostate segmentation on MRI based on a convolutional neural network. J. Med. Imaging. 5 (02): 1, 2018
Liao S., Gao Y., Oto A., Shen D.: Representation learning: A unified deep learning framework for automatic prostate MR segmentation. Med. Image. Comput. Comput. Assist. Interv. 16 (02): 254–261, 2013
Guo Y., Gao Y., Shen D.: Deformable MR prostate segmentation via deep feature learning and sparse patch matching. Deep Learn. Med. Image. Anal. 0062 (c): 197–222, 2017
Drozdzal M., Chartrand G., Vorontsov E., Shakeri M., Di Jorio L., Tang A., Romero A., Bengio Y., Pal C., Kadoury S.: Learning normalized inputs for iterative estimation in medical image segmentation. Med. Image. Anal. 44: 1–13, 2018
Zhu Q., Du B., Turkbey B., Choyke P. L., Yan P. (2017) Deeply-supervised CNN for prostate segmentation. Proc Int Jt Conf Neural Networks, pp. 178–184
Cheng R., Roth H. R., Lay N., Lu L., Turkbey B., Gandler W., McCreedy E. S., Choyke P., Summers R. M., McAuliffe M. J.: Automatic MR prostate segmentation by deep learning with holistically-nested networks. Med. Imaging. 2017. Image. Process. 10133 (4): 101332H, 2017
Yi Z., Wei R., Ge G., Ding L., Zhang X., Wang X., Zhang J.: Fully automatic segmentation on prostate MR images based on cascaded fully convolution network. J. Magn. Reson. Imaging 49 (4): 1149–1156, 2018
Zabihollahy F., Schieda N., Jeyaraj S. K., Ukwatta E.: Automated segmentation of prostate zonal anatomy on T2-weighted (T2W) and apparent diffusion coefficient (ADC) map MR images using U-Nets. Med. Phys. 46 (7): 3078–3090, 2019
Geng L., Wang J., Xiao Z., Tong J., Zhang F., Wu J.: Encoder-decoder with dense dilated spatial pyramid pooling for prostate MR images segmentation. Comput. Assist. Surg. 24 (sup2): 13–19, 2019
Lu T., Liang A., Li L., Liu W., Kang H., Chen C. (2019) Automatic prostate segmentation based on fusion between deep network and variational methods. J Xray Sci Technol, 1–17
Zhu Q., Du B., Wu J., Yan P. (2018) A Deep Learning Approach: Health Data Analysis Automatic 3D Prostate MR Segmentation with Densely-Connected Volumetric ConvNets. Proc Int Jt Conf Neural Networks
Karimi D., Samei G., Kesch C., Nir G., Salcudean S. E.: Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models. Int. J. Comput. Assist. Radiol. Surg. 13 (8): 1211–1219, 2018
Feng Z., Nie D., Li W., Shen D. (2018) Semi-supervised learning for pelvic MR image segmentation based on multi-task residual fully convolutional networks. Proc - Int Symp Biomed Imaging, 2018-April(Isbi), pp 885–888
Jia H., Xia Y., Song Y., Zhang D., Huang H., Zhang Y., Cai W.: 3D APA-net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images. IEEE Trans. Med. Imaging PP (c): 1–1, 2019
Nie D., Li W., Gao Y., Lian J., Shen D.: STRAINet: Spatially Varying sTochastic Residual AdversarIal Networks for MRI Pelvic Organ Segmentation. IEEE Trans. Neural. Networks Learn. Syst. 30 (5): 1552–1564, 2019
Zhu Q., Bo D., Yan P. (2019) Boundary-weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation. IEEE Trans Med Imaging:1–1
To M. N. N., Vu D. Q., Turkbey B., Choyke P. L., Kwak J. T.: Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging. Int. J. Comput. Assist. Radiol. Surg. 13 (11): 1687–1696, 2018
Ma L., Guo R., Zhang G., Tade F., Schuster D. M., Nieh P., Master V., Fei B.: Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion. Med. Imaging 2017 Image Process. 10133: 101332O, 2017
Zhou S., Nie D., Adeli E., Yin J., Lian J., Shen D.: High-Resolution Encoder-Decoder Networks for Low-Contrast medical image segmentation. IEEE Trans. Image Process. 29 (X): 461–475, 2019
Shi Y., Yang W., Gao Y., Shen D.: Does Manual Delineation only Provide the Side Information in CT Prostate Segmentation?. In: (Descoteaux M., Ed.) MICCAI 2017, Part III, LNCS 10435, vol 10435. Springer International Publishing, 2017, pp 692–700
Dong X., Lei Y., Tian S., Wang T., Patel P., Curran W. J., Jani A. B., Liu T., Yang X. (2019) Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network. Radiother Oncol:1–8
Liu C., Gardner S. J., Wen N., Elshaikh M. A., Siddiqui F., Movsas B., Chetty I. J.: Automatic segmentation of the prostate on CT images using deep neural networks (DNN). Int. J. Radiat. Oncol. Biol. Phys. 104 (4): 924–932, 2019
He K., Cao X., Shi Y., Nie D., Gao Y., Shen D.: Pelvic organ segmentation using distinctive curve guided fully convolutional networks. IEEE Trans. Med. Imaging 38 (2): 585–595, 2019
Wang S., He K., Nie D., Zhou S., Gao Y., Shen D.: CT Male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation. Med. Image. Anal. 54: 168–178, 2019
Balagopal A., Kazemifar S., Nguyen D., Lin M.-H., Hannan R., Owrangi A., Jiang S. (2018) Fully automated organ segmentation in male pelvic CT images. Phys Med Biol 63(24)
Kearney V., Chan J. W., Wang T., Perry A., Yom S. S., Solberg T. D.: Attention-enabled 3D boosted convolutional neural networks for semantic CT segmentation using deep supervision. Phys. Med. Biol. 64 (13): 135001, 2019
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L., Polosukhin I. (2017) Attention is all you need
Funding
The authors would like to thank Fundação para a Ciência e Tecnologia (FCT) for the PhD grant (reference SFRH/BD/146887/2019) awarded to the first author, which this work is a part of.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no conflict of interest.
Additional information
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: Image & Signal Processing
Rights and permissions
About this article
Cite this article
Almeida, G., Tavares, J.M.R. Deep Learning in Radiation Oncology Treatment Planning for Prostate Cancer: A Systematic Review. J Med Syst 44, 179 (2020). https://doi.org/10.1007/s10916-020-01641-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-020-01641-3