Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Image Processing Approach for Detection of Leukocytes in Peripheral Blood Smears

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Peripheral blood smear analysis is a gold-standard method used in laboratories to diagnose many hematological disorders. Leukocyte analysis helps in monitoring and identifying health status of a person. Segmentation is an important step in the process of automation of analysis which would reduce the burden on hematologists and make the process simpler. The segmentation of leukocytes is a challenging task due to variations in appearance of cells across the slide. In the proposed study, an automated method to detect nuclei and to extract leukocytes from peripheral blood smear images with color and illumination variations is presented. Arithmetic and morphological operations are used for nuclei detection and active contours method is for leukocyte detection. The results demonstrate that the proposed method detects nuclei and leukocytes with Dice score of 0.97 and 0.96 respectively. The overall sensitivity of the method is around 96%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kose, K., Cetin-Atalay, R., and Cetin, E., A, Special issue on microscopic image processing. SIViP 8(1):1, 2014.

    Article  Google Scholar 

  2. Hiary, H., Alomari, R. S., Saadah, M., and Chaudhary, V., Automated segmentation of stromaltissue in histology images using a voting Bayesian model. SIViP 7(6):1229, 2013.

    Article  Google Scholar 

  3. Jyoti, R., Annapurna, S., Bhadauria, H., Jitendra, V., and Jagtar Singh, D., Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybernetics and Biomedical Engineering 37(4):637, 2017.

    Article  Google Scholar 

  4. Enas, A., Mazin Abed, M., Dheyaa Ahmed, I., Arunkumar, N., and Venkatraman, V., Computeraided solution for automatic segmenting and measurements of blood leucocytes using static microscope images. J. Med. Syst. 42(4):58, 2018.

    Article  Google Scholar 

  5. Der-Chen, H., Kun-Ding, H., and Yung-Kuan, C., A computer assisted method for leukocytenucleus segmentation and recognition in blood smear images. The Journal of Systems and Software 85:2104, 2012.

    Article  Google Scholar 

  6. Madhloom, H. T., Kareem, S. A., Ariffin, H., Zaidan, A. A., Alanazi, H. O., and Zaidan, B. B., An automated white blood cell nucleus localization and segmentation using image arithmetic and automatic threshold. J. Appl. Sci. 10(11):959, 2010.

    Article  Google Scholar 

  7. Lorenzo, P., and Di Cecilia, R., White blood cells identification and counting from microscopicblood image. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering 7(1):20, 2013.

    Google Scholar 

  8. Yiping, Y., Yiping, C., and Wenxian, S., A method of leukocyte segmentation based on S component and B component images. Journal of Innovative Optical Health Sciences 7(1):1, 2014. https://doi.org/10.1142/S1793545814500072.

    Article  Google Scholar 

  9. Leyza Baldo, D., Rodrigo, M., and Neucimar Jeronimo, L., White blood cell segmentation using morphological operators and scale-space analysis. In Proceedings of IEEE XX Brazilian Symposium on Computer Graphics and Image Processing pp. 294–304, 2007. https://doi.org/10.1109/SIBGRAPI.2007.33

  10. Yan, L., Rui, Z., LeiMi, C., and Di Yihui, Y., Segmentation of white blood cell from acutelymphoblastic leukemia images using dual-threshold method. Computational and Mathematical Methods in Medicine 2016:1, 2016.

    CAS  Google Scholar 

  11. Syadia Nabilah, M. S., Mohd Razali, M. T., and Wan Nurshazwani, W. Z., White blood cell (WBC) counting analysis in blood smear images using various color segmentation methods. Measurement 116:543, 2018.

    Article  Google Scholar 

  12. Minal, D. J., Karode, A. H., and Suralkar, S. R., Detection of acute leukemia using white bloodcells segmentation based on blood samples. International Journal of Electronics and Communication Engineering and Technology 4:148, 2013.

    Google Scholar 

  13. Nagabhushana, R. M., and Rajeshwari, P., Geometrical analysis of leukocyte nucleus to detect lymphoblast from microscopic blood images. International Journal of Technology and Engineering Science 2(6):1947, 2014.

    Google Scholar 

  14. Mazin, Z. O., and Alaa, B. A., Segmentation and feature extraction of lymphocytes WBC using microscopic images. International Journal of Engineering Research and Technology 3:696, 2014.

    Google Scholar 

  15. Nemane, J. B., Chakkarwar, V. A., and Lahoti, P. B., White blood cell segmentation and counting using global threshold. International Journal of Emerging Technology and Advanced Engineering 3:639, 2013.

    Google Scholar 

  16. Hayan, T. M., Sameem Abdul, K., and Hany, A., An image processing application for thelocalization and segmentation of lymphoblast cell using peripheral blood images. J. Med. Syst. 36:2149, 2012. https://doi.org/10.1007/s10916-011-9679-0.

    Article  Google Scholar 

  17. Ramin, S., Hossein, R., and Ardeshir, T., Extraction of nucleolus candidate zone in white bloodcells of peripheral blood smear images using curvelet transform. Computational and Mathematical Methods in Medicine 2012:1, 2012.

    Google Scholar 

  18. Sajjad, M., Khan, S., Jan, Z., Muhammad, K., Moon, H., Kwak, J. T., Rho, S., Baik, S. W., and Mehmood, I., Leukocytes classification and segmentation in microscopic blood smear: A resource-aware healthcare service in smart cities. IEEE Access 5:3475, 2017.

    Article  Google Scholar 

  19. Narjes, G., Alireza, V., Ardeshir, T., and Pardis, N., Segmentation of white blood cells from microscopic images using a novel combination of k-means clustering and modified watershed algorithm. Journal of Medical Signals and Sensors 7(2):92, 2017.

    Google Scholar 

  20. Zhi, L., Jing, L., Xiaoyan, X., Hui, Y., Xiaomei, L., Jun, C., and Chengyun, Z., Segmentation ofwhite blood cells through nucleus mark watershed operations and mean shift clustering. Sensors (Basel) 15(9):1, 2015.

    Google Scholar 

  21. Congcong, Z., Xiaoyan, X., Xiaomei, L., Ying-Jie, C., Wu, Z., Jun, C., Chengyun, Z., and Zhi, L., White blood cell segmentation by color-space-based k-means clustering. Sensors (Basel) 14(9):16128, 2014. https://doi.org/10.3390/s140916128.

    Article  CAS  Google Scholar 

  22. Morteza Moradi, A., Saeed, K., Ardeshir, T., and Mostafa Ghelich, O., Recognition of acute lymphoblastic leukemia cells in microscopic images using kmeans clustering and support vector machine classifier. Journal of Medical Signals and Sensors 5:49, 2015.

    Google Scholar 

  23. Lin, Y., Peter, M., and David, J. F., Unsupervised segmentation based on robust estimation andcolor active contour models. IEEE Trans. Inf. Technol. Biomed. 9(3):475, 2005.

    Article  Google Scholar 

  24. Seyed Hamid, R., and Hamid Soltanian, Z., Automatic recognition of five types of white bloodcells in peripheral blood. Comput. Med. Imaging Graph. 35:333, 2011.

    Article  Google Scholar 

  25. Farnoosh, S., Zainina, S., Abdul Rahman, R., Badrul Hisham, A. K., and Iqbal, S. M., A framework for white blood cell segmentation in microscopic blood images using digital image processing. Biological Procedures Online 11:196, 2009. https://doi.org/10.1007/s12575-009-9011-2.

    Article  CAS  Google Scholar 

  26. Byoung Chul, K., Ja-Won, G., and Jae-Yeal, N., Automatic white blood cell segmentation usingstepwise merging rules and gradient vector flow snake. Micron 42(7):695, 2011.

    Article  Google Scholar 

  27. Mathur, A., Tripathi, S. A., and Kuse, M., Scalable system for classification of white blood cellsfrom leishman stained blood stain images. Journal of Pathology Informatics 4(Suppl):S15, 2013. https://doi.org/10.4103/2153-3539.109883.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Donida, R., Labati, V. and Piuri, F. S., ALL-IDB: The acute lymphoblastic leukemia image database for image processing, pp. 2045–2048, 2011. https://doi.org/10.1109/ICIP.2011.6115881

  29. Magorzata, P., Juliusz, L. K., and Diana, W., Biomedical images enhancement based on theproperties of morphological spectra. Biocybernetics and Biomedical Engineering 35(3):206, 2015.

    Article  Google Scholar 

  30. Bakos, M., Active contours and their utilization at image segmentation. Poprad: Proc. 5thSlovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics, 2007, 313–317.

    Google Scholar 

  31. Kass, A. W. D. T., M., Snakes: Active contour models. International Journal of ComputerVision 1(4):321, 1988.

    Google Scholar 

  32. Keerthana, P., Jan, W., Bhagath, P., Kumar, C., Marx, P., and Gopalakrishna, K., Applications ofTissueQuant a color intensity quantification tool for medical research. Comput. Methods Prog. Biomed. 106(1):27, 2012.

    Article  Google Scholar 

  33. Rong, C., Xiaoqin, Z., Lixin, H., and Min, W., Subimage cosegmentation in a single white bloodcell image, Proceedings of IEEE 7th International Conference on Computational Intelligence, Communication Systems and Networks pp. 152–157, 2015. DOI https://doi.org/10.1109/CICSyN.2015.36

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keerthana Prasad.

Ethics declarations

Funding

No funding was used for the proposed work.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, R.B., Prasad, K., Hebbar, H. et al. Image Processing Approach for Detection of Leukocytes in Peripheral Blood Smears. J Med Syst 43, 114 (2019). https://doi.org/10.1007/s10916-019-1219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1219-3

Keywords

Navigation